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Techniques from statistical physics can be used in the analysis of machine
learning algorithms. Machine learning models, and in particular neural net-
works, consist of a large number of adaptive weights. Under special assumptions,
it becomes possible to model the macroscopic learning behavior of these systems
by a set of deterministic differential equations. Examples of the approach for
the analysis of on-line learning in two-layer sigmoidal neural networks can be
found in [1, 2]. Recently, a first statistical physics analysis of on-line gradient
descent learning in two-layer ReLU neural networks has been done [3]. Now,
the aim is to analyze within the framework the learning behavior of more ex-
tended architectures: First, the previously studied two-layer ReLU network will
be augmented with biases and second layer weights. This gives rise to a machine
that is capable of representing any real-valued continuous function on compact
subsets of RN , a so-called universal approximator, see [4, 5], and proved specifi-
cally for ReLU activation in [6]. Secondly, we will revisit tree-like architectures,
in which the neurons’ receptive fields are non-overlapping. The consideration of
these tree-like networks may prove as an important step in a potential extension
of the theory towards deep neural networks.
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