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Abstract

In this thesis Generalized Matrix Learning Vector Quantization (GMLVQ) is examined on
labeled datasets of complex-valued feature vectors which represent time series in Fourier
space. Recently, a version of GMLVQ for complex-valued data has been proposed that
utilizes the mathematical formalism of Wirtinger calculus to de�ne the derivatives of the
GLVQ-cost function with respect to the prototypes and the relevance matrix [4][5]. In
this thesis the proposed method is implemented and examined in the speci�c application of
classi�cation of Fourier transformed discrete sampled time series. Experiments show that
the method yields classi�ers with meaningful prototypes and a matrix of complex relevance
values. Besides that, the performance of the functional Fourier representation of the data
is compared to the time domain representation in which the functional nature of the data is
not taken into account, along the lines of recent research [8][9]. In the experiments bene�ts
are found of the functional approximation of the time series using Fourier basis functions
for the classi�cation. These include performance gains and dimensionality reduction.
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1 Introduction

Common approaches when dealing with the classi�cation of complex-valued data and a
supervised learning method which is only formulated for real-valued data are taking the
real parts only or concatenating the real- and imaginary parts of the data. The �rst
approach ignores the information in the imaginary parts which can also be of importance
and therefore might decrease classi�cation performance. The second approach does include
the information in the imaginary parts. However, the complex numbers are not considered
as one feature and therefore the method may not adjust for correlations of the complex-
valued features.

In this thesis the supervised learning method Generalized Matrix Learning Vector Quanti-
zation (GMLVQ) is used for the classi�cation of time series data. The similarity measure is
a quadratic form in which the matrix contains feature relevance weights giving importance
to the features and pairs of features for the classi�cation problem at hand. During the
training stage of GMLVQ class prototypes and the relevance matrix (and thus the distance
measure) are adapted. The output of the training stage are the prototypes in the same
space of the data and the relevance matrix indicating which features and pairs of features
were of importance for the classi�cation. These de�ne a classi�er, and new data is classi�ed
to the class of the prototype which is closest according to the quadratic distance measure.
This way the classi�cation resembles a k-nearest neighbors (k-NN) classi�er, with the main
di�erence that in k-NN schemes classi�cation is done on the examples in the dataset itself
and Learning Vector Quantization (LVQ) schemes have a training phase in advance to
�nd typical representatives of the classes in the dataset. In GMLVQ the updates of the
prototypes and relevance matrix is guided by the minimization of a cost function [10][11]
consisting of the relative distance between the closest correct prototype and the incorrect
prototype. Since distance is always real-valued, the outer derivatives of the cost function
are therefore always taken w.r.t. real variables. However, for the inner derivatives, there
is a need to describe the derivatives of the distance with respect to the prototypes and
the relevance matrix. Chapter 2 gives a quick overview of LVQ, the formulas and cost
function that are used. The adaptation of GMLVQ to work on complex-valued feature
vectors directly is described in chapter 3 in which in addition some of the derivatives in
[4][5] are derived. The implementation of the method is then described as an extension for
an existing GMLVQ implementation [1].

Unlike other classi�cation problems with independent features, such as classi�cation of
vegetables where we may describe the objects with feature vectors ξ ∈< Color, Shape,
Structure>, in high-dimensional functional data there are properties that we can take ad-
vantage of. As was shown in previous research, the naive approach of classi�cation on
discretized functional data directly has several disadvantages [9]. These include an un-
necessary high dimensionality and therefore a large number of parameters and expensive
computation, convergence problems and over�tting e�ects [9]. To take advantage of the
functional nature of the data (such as the natural order and highly correlated neighbour-
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1 Introduction

ing features), a representation of the spectral data and prototypes in terms of appropriate
basis functions (Chebyshev) yielding coe�cients was combined with GMLVQ [9], thus the
transformation ξ ∈ RN → c = (c0, c1, ...cn)T ∈ Rn+1 for representation with a polynomial
of degree n. Since the data is represented by fewer Chebyshev coe�cients, the dimension-
ality of the classi�cation problem is reduced and the method becomes less prone to noise
because of the introduced smoothing of the data [8]. Furthermore it was shown that on
some datasets with as few as 20 coe�cients classi�cation performance was at least as good
as classi�cation in original space, and that the performance gain was not only due to the
implicit smoothing of the data, but also due to the appropriate functional representation
itself [9].

In this contribution we consider the Fourier representation of time series yielding com-
plex coe�cients, where in this case the basis functions are sinusoidal basis functions of
di�erent frequencies and the complex coe�cients indicate the amount of magnitude and
phase present in the time series of the di�erent sinusoids. This will allow us to test the
implemented Complex GMLVQ (CGMLVQ) method based on Wirtinger derivatives, and
also study the performance of classi�cation of time series (thus prefarably with a peri-
odic nature) in Fourier space along the lines of previous research citemelchert15[9]. The
transformation of the data can be described as ξ ∈ RN → X = (X0, X1, ..., Xn−1)T ∈ Cn
for the approximation of time series in Fourier space truncated at n frequencies. Some
properties of the transform that need to be taken into account are described in chapter 4.
Furthermore, note that the intuitiveness of LVQ schemes lies in the fact that the proto-
types and relevance matrix are in the same space as the data [11]. Since training here is
considered in the complex space the resulting prototypes and matrix are complex-valued.
The interpretation of the complex prototypes and matrix and the back transformation in
order to interpret the classi�er in the original space of the data is the subject at the end
of chapter 4.

The experiments in chapter 5 are on di�erent datasets, starting from experiments on
datasets purely used to test the Wirtinger CGMLVQ method, and progressing to labeled
datasets which appear especially suitable for approximation using Fourier basis functions
because of observed periodicity in the time series.
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2 Learning Vector Quantization

As discussed GMLVQ is the machine learning method used in this paper. This chapter
provides a quick overview of LVQ and then in particular GMLVQ.

LVQ is a supervised learning method that is employed on a labeled data set X consisting
of feature vectors (xi, y) ∈ RN×C that aims to identify typical prototype vectors (wi, y) ∈
RN ×C for the di�erent classes C in the data set. Note that the set C is a discrete set of
class labels, C = (y1, ..., yk)

The prototype vectors are de�ned as:

W = (w1, ...,wK),wk ∈ RN (2.1)

Training phase

In the training phase a distance measure d is used to compute distances between data
points and prototypes. The examples x ∈ X are considered on a one by one basis causing
an update to one or more prototypes in each such a step. Which prototype(s) are updated
is determined by distance measure d. A popular choice of d is the squared Euclidean
distance measure.

d(w,x) =
N∑
i=1

(xi − wi)2 (2.2)

Resulting

classi�erAfter the training phase the classi�er is de�ned by the prototype positions that resulted
from the training phase and the distance measure d. An advantage of LVQ is that the
resulting prototypes are intuitive, since the prototypes are feature vectors in the same
space as the data. They can therefore be interpreted as typical representatives for their
class.

An incoming datapoint ξ ∈ RN which is to be classi�ed is given the class label of the
prototype which is closest according to d. In certain circumstances in which multiple
prototypes per class were chosen, the K nearest prototypes can also be considered and
data point ξ is then assigned to the class that has a majority among these K nearest
prototypes.
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2 Learning Vector Quantization

2.1 LVQ1

The most basic version of LVQ updates the prototypes in the learning phase according to
a winner-takes-all paradigm and usually the normal squared Euclidean distance is used as
a measure of similarity. The prototypes are then trained via the following scheme:

1. Pick input (x, y) ∈ X

2. Calculate w∗ = argminjd(wj ,x)

3. Update w∗ according to:

w∗ =

{
w∗ + α · (x−w∗), if c(w∗) == y

w∗ − α · (x−w∗), if c(w∗)! = y
(2.3)

Note that in step three if the winner prototype is of the same class it is attracted to
data point x. If the winner prototype is of a di�erent class than the prototype is moved
further away from x. The winner-takes-all approach is re�ected in the fact that exactly
one prototype is updated per example. α denotes the learning rate. The higher α, the
more the prototypes move (learn) in each step. α is usually annealed over the training
epochs. This in order to move the prototypes by higher amounts in the beginning of the
training phase and �ne tune the position of prototypes in the last epochs. For example for
training epoch t, α can be de�ned as:

α(t) =
a

b+ c · t
(2.4)

for constants a, b and c. In this scheme α(t) becomes smaller over the number of epochs
and approaches 0 when t approaches ∞.

2.2 GLVQ

In [10] a speci�c cost function E was introduced that, given a dataset, a con�guration of
prototypes and distance measure, returns the cost of this con�guration. The motivation
for this cost function is the observation that the original version of LVQ does not satisfy
the convergence condition.

E =
∑
m∈X

em (2.5)

In equation (2.5) the cost for a LVQ con�guration is de�ned as the sum of the cost per
example. The cost for example xm is de�ned in terms of the relative di�erence between the
closest prototype with the same class label wL and the closest prototype with a di�erent
class label wK .
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2 Learning Vector Quantization

em =
dL(xm)− dK(xm)

dL(xm) + dK(xm)
(2.6)

The denominator in equation (2.6) ensures that the value of em is between −1 and 1.
In case of a correct classi�cation of example xm the value of em is obviously negative
(dL(xm) < dK(xm)) and in case of an incorrect classi�cation of example xm the value is
positive (dK(x) < dL(x)).

Each training epoch consists of the minimization of the cost function in equation (2.5) by
adjusting the prototypes and potential other parameters following a gradient descent. Note
that since the cost function is de�ned in terms of wL and wK two prototypes are updated
in each presentation of an example instead of one. One batchstep of the algorithm can be
summarized as:

W = W − α · ∇WE (2.7)

In which the term ∇WE, i.e. the gradient of E w.r.t. W, is understood as:

∇WE =
P∑
µ=1

∇wL/wKeµ (2.8)

As can be seen in equation (2.8), the update is restricted to wL and wK for each example
xµ. The derivatives of e w.r.t. wL and wK need to be described. Following the chain rule
the two derivatives are described as:

∇wLeµ =
∂eµ

∂d(xµ,wL)
· ∂d(xµ,wL)

∂wL
= − 4dK

(dL + dK)2
(x−wL) (2.9)

∇wKeµ =
∂eµ

∂d(xµ,wK)
· ∂d(xµ,wK)

∂wK
=

4dL
(dL + dK)2

(x−wK) (2.10)

Upon presentation of one example prototypes wL and wK are adapted in the direction of
the negative gradients. This yields the learning rules for the prototypes wL and wK .

wL = wL + α
dK

(dL + dK)2
(x−wL) (2.11)

wK = wK − α dL
(dL + dK)2

(x−wK) (2.12)

Note that the outer derivative is an application of the quotient rule, and the derivative of
the Euclidean distance with respect to a prototype is ∂d

∂w∗ = −2(x−w∗). The constant is
not of much importance in gradient based learning since a learning rate is used.
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2 Learning Vector Quantization

2.3 Relevance learning

As mentioned above the squared Euclidean distance is a popular choice for distance measure
d. The use of the squared Euclidean distance measure as a measure of similarity has
several disadvantages. In the squared Euclidean distance measure every feature is treated
as equally important in the calculation of the distance. However, in most classi�cation
problems features are of di�erent importance in the classi�cation; Feature 1 might be more
discriminative between the classes than feature 2, that is, if we only had the value of feature
1 of an example we can predict the correct class with higher probability than if we only had
the value of feature 2. Also if no normalization technique has been used for the features,
the di�erent value ranges of the features also impact the amount features in�uence the
distance. Relevance learning is the incorporation of a relevance vector of weights as in [6]
or matrix as in [11] in the distance measure to account for these observations and adapt
the distance measure accordingly. The matrix of relevance weights accounts in addition
for the importance of correlation between pairs of features. Note that the relevance vector
or matrix are adapted during training.

Besides improved performance of the classi�cation by adaptation of d one could argue that
the intuitiveness of the classi�er has also increased: After training the resulting relevance
matrix tells meaningful information about the classi�cation problem; On the diagonal we
can see how important the di�erent features are for the classi�cation problem, on the
o�-diagonal elements we can see the importance of the pair-wise correlations.

2.4 GMLVQ

In [11] a full matrix Λ of relevance weights was introduced. The distance measure is a
quadratic form.

dΩ(w,x) = (x−w)TΛ(x−w) (2.13)

If x − w 6= 0, then the distance must be greater than zero. To ensure this, Λ must
be a positive de�nite matrix [11]. To this end Λ is written as ΩTΩ, since for any non-
singular matrix A, ATA is always a positive de�nite symmetric matrix. This leads to the
equation:

dΩ(w,x) = (x−w)TΩTΩ(x−w) (2.14)

By the distribution property of the transpose operation, BTAT = (AB)T equation 2.14
can be written as:

dΩ(w,x) = ‖Ω(x−w)‖2 (2.15)
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2 Learning Vector Quantization

This representation of the distance measure as in equation 2.15 can in particular be in-
terpreted as the normal squared Euclidean distance after the vectors x and w have been
transformed under the linear transformation matrix Ω. GMLVQ is also Generalized, mean-
ing it uses the same cost function as GLVQ. Since Λ has been introduced in the distance
measure a new derivative with respect to w needs to be described [11].

∂dΩ

∂w∗
= −2ΩTΩ(x−w) (2.16)

Substituting this new derivative in 2.9 and 2.10 yields the gradients w.r.t. the prototypes
and this leads to the new learning rules.

wL = wL + α
dK

(dL + dK)2
Λ(x−wL) (2.17)

wK = wK − α dL

(dL + dK)2
Λ(x−wK) (2.18)

The matrix Ω is a parameter of the the distance measure and is also adapted to minimize
the cost function.

∂dΩ

∂Ω
= Ω(x−w)(x−w)T (2.19)

Then the two gradients of Ω w.r.t. distance of wL and wK are:

∇ΩL
eµ =

∂eµ

∂dΩ(xµ,wL)
· ∂d

Ω(xµ,wL)

∂Ω
=

2dK
(dL + dK)2

Ω(x−wL)(x−wL)T (2.20)

∇ΩK
eµ =

∂eµ

∂dΩ(xµ,wK)
· ∂d

Ω(xµ,wK)

∂Ω
= − 2dL

(dL + dK)2
Ω(x−wK)(x−wK)T (2.21)

Ω is then updated following gradient descent.

Ω = Ω− β(∇ΩL
eµ +∇ΩK

eµ) (2.22)

As can be seen in equation (2.22) the learning rates of the prototypes and the Ω matrix
are di�erent, and usually β < α.
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3 Wirtinger Calculus and complex

GMLVQ

In this chapter an adaptation of GMLVQ with learning formulas based on derivatives
formulated with the mathematical formalism of Wirtinger calculus is discussed [4][5]. With
this theoretical derivation of the learning rules of the complex valued prototypes and matrix
the adaptation of an existing implementation of GMLVQ in order to work with complex-
valued data will be at the center of the attention in the last part of the chapter. This leads
to an implementation of GMLVQ suitable for complex-valued datasets, which is used in
the experiments in chapter 5.

In the previous section GMLVQ was brie�y discussed. Since the data was in the space
RN , the cost for one example (2.6) was a function f : RN → R. Similarly, the distance
measure d was a function from real valued vectors and matrix to a real scalar. Now
we consider data consisting of feature vectors x ∈ CN . Therefore the Euclidean quadratic
distance measure needs to be described which takes complex feature vectors and a complex
matrix. In order to restate the adaptation rules for the prototypes and the relevance matrix,
the mathematical formalism of Wirtinger calculus is used which simpli�es di�erentiation
in the complex domain [4][5] by establishing complex di�erentiation in analogy to real
di�erentiation.

A function f(z) : C→ C with z = x+ iy can be written as

f(z) = f(x+ iy) = u(x, y) + iv(x, y) (3.1)

As a simple but intuitive example consider the function f(z) = z2:
f(x+ iy) = (x+ iy)2 = x2 − y2 + 2xyi

From the above derivation it is easy to see u and v:

u(x, y) = x2 − y2

v(x, y) = 2xy

Consequently function f can also be regarded as two real-valued functions each of two real
variables.

However, in complex GMLVQ the cost function only makes sense if it is real valued. The
function that gives the cost for an example x ∈ CN must therefore be a function of the
form e : CN → R. For this reason the discussion focuses on functions of the form as in
equation (3.2).
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3 Wirtinger Calculus and complex GMLVQ

Real-valued functions f(z) : C→ R can in analogy to equation (3.1) be regarded as:

f(z) = f(x+ iy) = u(x, y) (3.2)

For this reason function f can also be regarded as a function of two real variables that
maps to a real number, i.e. f = u : R2 → R. Hence the derivative of function f w.r.t z
can be described in the same way as the derivative of a function of two real variables, i.e.
by taking the partial derivative of the function u w.r.t. x and the partial derivative of u
w.r.t. y. For the optimization of the function u it is required that these derivatives are
both zero:

∂u
∂x = 0 and ∂u

∂y = 0

The same requirement can be written as: [5]

a
∂u

∂x
+ ib

∂u

∂y
= 0 (3.3)

As pointed out in [5] any nonzero values can be chosen for a and b for equation (3.3) to
hold. The choice of a = 1

2 and b = 1
2 turns out to be a particularly convenient choice since it

leads to the establishment of a calculus in which di�erentiation w.r.t. complex variables is
similar to real di�erentiation. Choosing 1

2 as constant yields the aforementioned Wirtinger
derivatives:

Wirtinger's

derivatives

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
(3.4)

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(3.5)

Consider function f : C→ R of complex variable z = x+ iy which is de�ned as:

f(z) = z∗z = x2 + y2 (3.6)

This function is simply the squared magnitude of z: f(x+ iy) = (x− iy)(x+ iy) = x2 +y2.
Calculating ∂

∂z by applying the operator 3.4:

∂

∂z
(z∗z) =

1

2

(
∂

∂x
(x2 + y2)− i ∂

∂y
(x2 + y2)

)
=

1

2
(2x− i2y) = x− iy = z∗ (3.7)

Equation (3.7) shows a �rst example of the convenience of applying Wirtinger calculus;
When taking the derivative with respect to z, z∗ can be treated as a constant. Likewise
using equation (3.5) yields ∂

∂z∗ (z∗z) = z. The sum, product and quotient rule can also be
shown to be directly applicable in this calculus.
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3 Wirtinger Calculus and complex GMLVQ

The chain rule is di�erent, but under certain circumstances it is the same as in real calculus
[5].

Since cost functions usually depend on many variables, the Wirtinger gradients need to
be de�ned. This is where the true convenience of the method appears, since the separate
di�erentiation of real and imaginary parts would be cumbersome.

∂f

∂z
=
(
∂f
∂z1

, ..., ∂f
∂zN

)T
(3.8)

∂f

∂z∗
=
(
∂f
∂z∗1

, ..., ∂f
∂z∗N

)T
(3.9)

Consider the function ‖z‖2 = zHz and:

zHz =
(
z∗1 , ..., z∗N

)
·

 z1

, ...,
zN

 = z∗1 · z1+, ...,+z∗N · zN

Now using the de�nition of the operator in (3.8) yields:

∂

∂z
(‖z‖2) =

∂

∂z
(z∗1 · z1+, ...,+z∗N · zN ) =

 z∗1
, ...,
z∗N

 = z∗ (3.10)

And likewise using the de�nition of the operator in (3.9) yields:

∂

∂z∗
(‖z‖2) =

∂

∂z∗
(z∗1 · z1+, ...,+z∗N · zN ) =

 z1

, ...,
zN

 = z (3.11)

In GMLVQ the distance measure is a quadratic form, ‖z‖2A = zHAz, and although we
consider complex variables the derivatives are described in an elegant way using Wirtinger
gradients:

∂

∂z
(‖z‖2A) = AT z∗ (3.12)

∂

∂z∗
(‖z‖2A) = Az (3.13)

Equation (3.13) follows directly from equation (3.9), as an example:
zHAz = z∗1(A11z1+, ...,+A1NzN )+, ...,+z∗N (AN1z1+, ...,+ANNzN )

11



3 Wirtinger Calculus and complex GMLVQ

Applying the de�nition of the gradient (3.9) yields:

∂
∂z∗ (z∗1(A11z1+, ...,+A1NzN )+, ...,+z∗N (AN1z1+, ...,+ANNzN ))

=

 A11z1+, ...,+A1NzN
, ...,

AN1z1+, ...,+ANNzN

 = Az

Equation (3.13) is used in the next section to describe the derivative of the distance measure
w.r.t the prototypes.

Recall that in GMLVQ the Ω matrix (containing relevance weights) of the quadratic dis-
tance measure is also updated according to the direction of the negative gradient. Hence
it is also necessary to describe this derivative in order to derive the corresponding learning
rule.

Derivation:

∂
∂Ω∗ (zHΩHΩz) = ∂

∂Ω∗

((
z∗1Ω∗11 + z∗2Ω∗12 z∗1Ω∗21 + z∗2Ω∗22

)(Ω11z1 + Ω12z2

Ω21z1 + Ω22z2

))
= ∂

∂Ω∗ ((Ω11z1 + Ω12z2)z∗1Ω∗11 + (Ω11z1 + Ω12z2)z∗2Ω∗12 + (Ω21z1 + Ω22z2)z∗1Ω∗21 + (Ω21z1 + Ω22z2)z∗2Ω∗22)

=

(
(Ω11z1 + Ω12z2)z∗1 (Ω11z1 + Ω12z2)z∗2
(Ω21z1 + Ω22z2)z∗1 (Ω21z1 + Ω22z2)z∗2

)
= ΩzzH

∂

∂Ω∗
(zHΩHΩz) = ΩzzH (3.14)

Equation (3.14) is used to describe the derivative of the distance measure w.r.t. the Ω
matrix.

3.1 Wirtinger applied to complex-valued GMLVQ learning

rules

The distance measure in the complex space is de�ned in analogy to the distance measure
in the real space and maps to real positive numbers when x 6= w.

dΩ(x,w) = (x−w)HΩHΩ(x−w) (3.15)

The learning rules in GMLVQ for real-valued data were based on the gradients of the cost
function w.r.t. wL, wK and Ω. Recall the de�nition of the cost function for an example
xµ in equation (2.6). The cost function itself consists of real distance values and therefore
only the derivative of the distance measure is a derivative w.r.t. complex variables, i.e. a
Wirtinger derivative.

Following the just derived equation (3.13) the derivative with respect to w yields:
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3 Wirtinger Calculus and complex GMLVQ

∂d2
Ω

∂w∗
= −ΩHΩ(x−w) (3.16)

And following equation (3.14) the derivative w.r.t. Ω∗ yields.

∂d2
ω

∂Ω∗
= Ω(x−w)(x−w)H (3.17)

Substituting the derivative in equation (3.16) in equations (2.9) and (2.10) gives the gra-
dients and this yields the learning rules of wL and wK in the complex space.

wL = wL + α
dK

(dL + dK)2
ΩHΩ(x−wL) (3.18)

wK = wK − α dL

(dL + dK)2
ΩHΩ(x−wK) (3.19)

Substituting the derivative in equation (3.17) in equation (2.20) and (2.21) gives the gra-
dients and this yields the learning rules of Ω

Ω = Ω +
β

(dL + dK)2

(
dLΩ(x−wK)(x−wK)H − dKΩ(x−wL)(x−wL)H

)
(3.20)

Note that Ω is adapted in such a way that dL(xµ) becomes smaller and dK(xµ) becomes
bigger. A comparison of these learning rules for complex GMLVQ with the learning rules
for real GMLVQ reveals that the updates are formally very similar. This follows directly
from the fact that the derivatives of the distance measure w.r.t. the complex-valued vari-
ables ((3.16), (3.17)) are similar to the derivatives of the distance measure in the real
domain, thanks to Wirtinger's calculus. Note that constant di�erences (like observed in
the derivatives of d w.r.t. w in the real domain vs. the complex domain) are not of much
importance when using learning rates. The transpose operation on the matrix Ω is the
Hermitian transpose, however this is the standard formulation of the transpose operation
in the complex domain and therefore is the default behavior of the transpose operation in
software packages such as Matlab.

3.2 Extending an existing GMLVQ implementation

For an implementation of complex GMLVQ it is obvious that complex data types need
to be available in order to represent the complex feature vectors, prototypes and matrix.
The transpose operation on vectors and matrices needs to be de�ned as the Hermitian
transpose.
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3 Wirtinger Calculus and complex GMLVQ

In this paper an existing implementation of GMLVQ is used [1]. This implementation is
in Matlab. Matlab has a complex data type already built in. The transpose operation
on a matrix A (in Matlab: A’) is de�ned as the Hermitian transpose. When we want to
transpose a vector (or matrix) without conjugating then we should use A.’ to indicate
this. Besides changes made in upcoming chapters, the learning rules as in equations (3.18),
(3.19), (3.20) need to be implemented in the batchstep of the algorithm when examples
are presented one by one in order to adapt the prototypes and matrix. In analogy to the
similarity between the learning rules in real GMLVQ and complex GMLVQ, in Matlab the
expression in code of the complex learning rules turns out to be very similar to the real
learning rules.

Furthermore, after an adaptation of Ω a normalization has to be applied such that
∑

Λii =
1. Recall that Λ = ΩHΩ and therefore Λii is the sum of the squared absolute values of
column i of Ω. Adding up the sum of the squared absolute values of every column of Ω
yields the normalization factor. Ω is then divided by the square root of the normalization
factor to satisfy the required

∑
Λii = 1. Hence after each batchstep normalization of Ω is

done as follows:

Ω =
Ω√∑

j

∑
i ‖Ωij‖2

(3.21)
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4 Classi�cation in coe�cient space,

Forward and backward transform

In the previous chapter an adaptation of the GMLVQ learning formulas was discussed
and implemented such that complex-valued data can be handled. Complex valued data
appears in various domains: Image analysis, Fourier- and Laplace transformed data and
so forth. The speci�c application for testing the method is time-series data represented by
feature vectors x ∈ RN to which the discrete Fourier transform is applied yielding complex
coe�cients X ∈ CN .

Unlike applications of GMLVQ to datasets in which examples are described by concate-
nating features of a di�erent nature (color, shape, material), the features in time series
data can be seen as discrete samples of an underlying function, which is unknown. This
allows for speci�c techniques to be used to take advantage of the functional nature of the
data. Recent research has found bene�ts of learning in coe�cient space [9]. GMLVQ was
applied to the functional representation (coe�cients representing contribution of Cheby-
shev basis functions) of spectral data and it was shown that an accurate classi�er could
be trained using those truncated Chebyshev series. Here, as a functional representation,
we consider the Fourier approximation in which the coe�cients in Fourier space indicate
the contribution, which are magnitude and phase, of the sinusoidal Fourier basis functions.
For this reason, although the Fourier transform can be applied to many kinds of functions,
it would be particularly interesting to apply the technique to datasets of time series with
a periodic nature.

The rest of this chapter brie�y describes the discrete Fourier transform (DFT) and a
resulting theorem about symmetry (4.1.1) which is important to take into account. Since
training in coe�cient space yields a classi�er described by the prototypes and Ω matrix
in the same space, for intuitiveness a back transformation is described to the original real
space, the time domain, in order to interpret the prototyeps and Ω matrix in the original
space.

4.1 Forward transformation: DFT

Given a dataset of feature vectors x ∈ RN representing time series of N samples, the DFT
is applied to each of the time series yielding frequency spectra X ∈ CN [12].

X(ωk) =
N−1∑
n=0

x(n)e−j2πkn/N , k = 0, 1, 2...N − 1 (4.1)
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4 Classi�cation in coe�cient space, Forward and backward transform

in which x is the sampled time series signal and e−j2πkn/N is the sampled complex sinusoid
at frequency ωk. The summation in equation (4.1) is understood as the dot product of
the signal x and the complex sinusoid at frequency ωk, which computes the coe�cient of
projection of the signal x onto the complex sinusoid at frequency ωk [12]. Therefore the
DFT can also be expressed as a multiplication of a signal with a DFT matrix, in which
the kth row of the DFT matrix is the sampled complex sinusoid at frequency ωk.


X(ω0)
X(ω1)
...

X(ωN−1)

 =


s0(0) s0(1) ... s0(N − 1)

s1(0) s1(1) ... s1(N − 1)
... ... ... ...

sN−1(0) sN−1(1) ... sN−1(N − 1)




x(0)
x(1)
...

x(N − 1)

 = Fx (4.2)

Each X(ωk) obtained from a signal x is then a complex coe�cient in which ‖X(ωk)‖ =√
<(X(ωk))2 + =(X(ωk))2 represents the amplitude and φ(X(ωk)) = tan− 1(=(X(ωk))

<(X(ωk)))
represents the phase of the complex sinusoid at frequency ωk.

4.1.1 Symmetry for real-valued series

Each time series signal is transformed from the time domain representation x ∈ RN to the
frequency spectrum X ∈ CN using formula (4.1). There is an important observation to
take into account when considering frequency spectra obtained from a DFT on real-valued
signals.

Theorem 4.1.1 The frequency spectrum of a real-valued discrete time series obtained by
a DFT is conjugate symmetric such that X(−ωk) = X(ωk)

∗.

(a) Time series example. (b) Corresponding symmetric power spectrum.

Figure 4.1: A plot of a time series (left) and the corresponding power spectrum (right). Note
the symmetry in the spectrum.
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4 Classi�cation in coe�cient space, Forward and backward transform

Theorem (4.1.1) is important to take into account when considering the Fourier represen-
tation of real-valued time series: One half of the frequency spectra is redundant since it
does not contain extra information and it can be easily reconstructed from the other half.
For this reason the time series x ∈ RN can be represented by complex coe�cient vectors
X ∈ CN/2+1 without losing any information.

4.1.2 Representations of vectors in Fourier space

As mentioned in chapter 1 complex-valued vectors could also be represented by concate-
nating the real parts and the imaginary parts to make them suitable for classi�cation
algorithms which are only de�ned for real-valued data. Therefore the frequency spectra as
discussed above X ∈ CN/2+1 could be represented as follows:

[
<(X)
=(X)

]
∈ RN+2 =



<(x1)
<(x2)
...

<(xN/2+1)

=(x1)
=(x2)
...

=(xN/2+1)


∈ RN+2 (4.3)

In the experiments, chapter 5, the classi�cation performance on this representation is
obtained for comparison with the Wirtinger method.

4.2 Classi�er in complex space and back transformation

One of the advantages of LVQ learning schemes is that the resulting classi�er of LVQ
learning is intuitive since the prototypes are in the same space as the data and in the case
of GMLVQ the Λ matrix gives the relevance of the features for the classi�cation which pro-
vides meaningful information about the classi�cation problem besides the adaptation of the
distance measure. If training is done on Fourier coe�cients CN , the resulting prototypes
are therefore wi ∈ CN and the matrix Λ ∈ CN×N . This gives an intuitive interpretation
in the Fourier space: The prototypes represent the class-typical contributions of the fre-
quency components and the relevance matrix indicates which frequency components are
most discriminative. Since the data was originally in the time domain, it is necessary to
transform the prototypes wi ∈ CN and matrix Λ ∈ CN×N from the Fourier domain to
the time domain for an intuitive interpretation in the time domain. The inverse Fourier
transform takes a frequency spectrum and transforms it to the corresponding time domain
signal.

x(n) =
1

N

N−1∑
k=0

X(k)ej2πnk/N , n = 0, 1, 2, ..., N − 1 (4.4)
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4 Classi�cation in coe�cient space, Forward and backward transform

The inverse DFT can be understood as the projections of a signal x onto the N di�erent
complex sinusoids [12]. We see in (4.4) that x(n) is de�ned as the average of the dot
product between the frequency spectrum X and the nth sample of the complex sinusoids
ej2πnk/N . An intuitive understanding is: In order to get the nth time domain sample of
x, we look at the nth sample of each complex sinusoid k, scale them by their contribution
X(k), sum these up and take the average.

4.2.1 Truncation and reconstruction

As discussed the Fourier transform of a time series x ∈ RN yields a vector X ∈ CN , this
is because N Fourier sinusoids are compared to the signal x. This follows directly from
equation (4.1) in which k, the frequency number, ranges from [0...N − 1]. Truncation at
n frequencies refers to k ranging from [0...n− 1] where obviously n < N , yielding spectra
X ∈ Cn in which only the �rst n complex sinusoids are used.

As a side note: The inverse DFT as in equation (4.4) assumes a conjugate symmetric
vector X and the implementation in Matlab requires X to be of length N in order to
construct a real signal x of length N . Therefore zeroes need to be appended to a prototype
w ∈ Cn representing a spectrum truncated at n core lowest frequencies, and the conjugate
symmetric part needs to be concatenated to yield w ∈ CN .

4.2.2 Interpretation of the complex prototypes in complex and original
space

After having trained the classi�er in the Fourier space, each prototype (W, c) ∈ Cn × C
represents the typical frequency spectrum for its class c. Therefore the prototype (W, c)
represents the class-typical contributions (magnitude and phase) of frequency components
ωk for class c. As already stated, the negative frequency components can be easily re-
constructed and appended to the vectors yielding prototypes (W, c) ∈ CN × C. If an
inverse Fourier transform is applied to (W, c) ∈ CN ×C as in (4.4), the time domain signal
(w, c) ∈ RN × C is constructed using the typical complex sinusoids for the class y. This
yields the class-typical prototypes in the time domain and can now be interpreted and
compared to the time series in the dataset. In �gure 4.2b is an example of this: On the left
prototypes are shown that resulted from training on a dataset in the original space and on
the right prototypes are shown that resulted from training in 20 coe�cient Fourier space
and then back transformed to original space.
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4 Classi�cation in coe�cient space, Forward and backward transform

(a) Resulting prototypes training in original
space. (b) Training on 20 coe�cients, backtransformed.

Figure 4.2: Resulting prototypes from learning on a dataset consisting of 7 classes, one prototype
per class. On the left are the resulting prototypes from learning in the original
space of the time series. On the right are the resulting prototypes from learning in
20-coe�cient Fourier space and then transformed back to the original space. The
prototypes on the right are smoother than the ones on the left, for example observe
the red prototype around features 50 and 100.

4.2.3 Interpretation of complex Λc in complex and original space

The matrix Λc is always a Hermitian positive de�nite matrix, by the fact that Λ is computed
as Λc = ΩHΩ. An Hermitian matrix has real diagonal values (=(Λii) = 0) and always has
real eigenvalues. The real values on the diagonal of Λc have the same interpretation as Λ
obtained from training on real valued data: The values represent the discriminative power
of the features for the classi�cation problem, and therefore it is necessary that the most
discriminative features have the highest impact on the distance. In the speci�c context
of Fourier coe�cients, the features are the di�erent frequency components. In this sense
if Λii has a high value, then the frequency component ωi was of high importance in the
classi�cation. That is for example in a two class problem where examples from one class
may have a high presence of the ωi frequency component while the ωi frequency component
was less present in examples from the other class. Likewise, if a frequency component ωj
has not much discriminative power, this can be because the component is equally present
in both classes or the classes show the same range of presence of the frequency component
among the examples, then a low relevance value for that component is the result.

In Λ trained on real valued data the o�-diagonal elements give weights to the importance
of correlations between pairs of features/variables. The o�-diagonal elements in complex
Λ are complex-valued. Λabs = ‖Λ‖ yields a real-valued symmetric matrix in which Λabsij =

Λabsji , i 6= j gives an overall weight to the importance of the correlation between features i
and j. This real representation can be used to graph the matrix visually, for example as
in the GMLVQ toolbox [1]. The complex value of the matrix Λij , i 6= j itself speci�es the
correlation of the real and imaginary parts separately between features i and j.
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4 Classi�cation in coe�cient space, Forward and backward transform

Using an arti�cial dataset with examples x ∈ C2 some of the above properties are illus-
trated, the example script used for this is in testCorrelationsComplex. The idea is
to let the two classes be discriminated only by the di�erence between feature 1 and feature
2. The following cases are examined:

1. Importance correlation feature 1 and feature 2 based on absolute value.

2. Importance correlation feature 1 and feature 2 based on:

(A) Real part only

(B) Imaginary part only

Listing 4.1: Resulting ΛC test 1

1 0.5286 + 0.0000i 0.1834 + 0.4643i
2 0.1834 - 0.4643i 0.4714 + 0.0000i

Listing 4.2: Resulting ΛC test 2A

1 0.6441 + 0.0000i -0.4636 - 0.1194i
2 -0.4636 + 0.1194i 0.3559 + 0.0000i

Listing 4.3: Resulting ΛC test 2B

1 0.4719 + 0.0000i 0.0393 + 0.4977i
2 0.0393 - 0.4977i 0.5281 + 0.0000i

From the above results clearly the matrix is able to detect case 1 by giving a high absolute
weight to the correlation. The cases in which only the real- or imaginary parts are correlated
are also re�ected in a corresponding weight for real/imaginary value for cases 2A and 2B.

If there is a correlation between two features only in the respective real- or imaginary parts
the concatenation method is suitable for this since it splits real- and imaginary parts into
separate features.

4.2.3.1 Back transformation Λc to original space

For the interpretation of the relevance matrix Λc in the original space a back transformation
needs to be formulated. The distance measure in the original space is de�ned as:

dΛ(x,w) = (x−w)TΛ(x−w) (4.5)

Recall that the distance measure in Fourier space is de�ned as:

dΛ(x,w) = (xC −wC)HΛC(xC −wC) (4.6)
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4 Classi�cation in coe�cient space, Forward and backward transform

Since the vectors in the Fourier space are obtained from an application of the DFT matrix
F in equation (4.1), equation (4.6) can be understood as: [7]

dΛ(xC ,wC) = (xC −wC)HFHΛCF(x−w) (4.7)

And therefore this leads to Λ = FHΛCF.

(a) Feature relevance from training in original
space.

(b) Back transformed relevance from training in
Fourier space.

Figure 4.3: Comparison between feature relevance as trained in original space and as trained in
Fourier space and then back transformed to original space.

In �gure 4.3 the feature relevance pro�le as resulted from training in original space and as
resulted from training in Fourier space and applying a back transformation on the resulting
matrix ΛC are plotted. The features that are indicated as most relevant (i.e. the highest
peaks) are very similar between the two �gures.
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5 Experiments

This chapter consists of experiments on several time series datasets primarily taken from
the UCR repository [2]. The central theme in this chapter is to test the CGMLVQ method
and to study the classi�cation performance in the Fourier space.

5.1 Test strategy

For each data set the performance in the original domain is recorded, and this classi�er's
performance on the validation sets serves as a reference. This reference performance is com-
pared to the resulting classi�ers trained in the complex Fourier coe�cient space truncated
at n frequencies, which is obtained as described in chapter 4.

1. Performance of GMLVQ in the original feature space which serves as a reference.
Since the data consists of vectors x ∈ RN the resulting prototypes are w ∈ RN and
the matrix Λ ∈ RN×N .

2. Training classi�ers with the Wirtinger derived adaptation of GMLVQ following chap-
ter 3 in the Fourier space of the time series, �rst on all the coe�cients and then
truncated at n coe�cients. Vectors x ∈ RN are represented by vectors X ∈ Cn. The
resulting prototypes are Wi ∈ Cn and matrix Λ ∈ Cn×n.

As discussed in chapter 4 complex coe�cients can also be represented by the concate-
nation of the real- and the imaginary parts. This means that training on frequency
spectra is done in the real space and it is interesting to compare the resulting perfor-
mance to the performance obtained from training in the complex valued space. The
data are then x ∈ R2n for n coe�cients and the resulting prototypes are wi ∈ R2n

and matrix Λ ∈ R(2n)×(2n).

3. The third strategy aims to examine the e�ect of the smoothing on the classi�cation
performance. To this end the data vectors x ∈ RN are transformed to Fourier space
with truncation at n frequencies just like in the second strategy, but here in contrast
the data is transformed back to the original domain with the iDFT as described in
chapter 4 yielding smoothed vectors xs ∈ RN and training and validation is then
applied on this data. This will allow us to understand if a possible performance
gain that might be observed in strategy 2 can only be explained by the fact that a
smoothing was applied to the data, or that in addition the functional representation
of the data is bene�cial to classi�cation performance.
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For each of the tests, either cross validation is used (as in script do_cross_benchmark)
and/or the speci�ed splits in the UCR repository [2]. (do_benchmark).

5.1.1 Performance measurement of the classi�ers

Two-class problems:
In a two-class problem we usually call the two classes "positive" and "negative". For
each feature vector x in the validation set, a classi�er's output is the prediction that
x belongs to the positive- or the negative class. This predicted class is either the true
class to which x belongs or the classi�er has misclassi�ed x. A confusion matrix shows
the classi�cation results on the validation set by plotting true class membership against
the predicted classes [3]. Obviously, since the true- and predicted class are equal on the
diagonal, the diagonal elements represent the correct classi�cations and the o�-diagonal
elements represent misclassi�cations.

When we have a confusion matrix we can calculate the true- and false positive rates, tpr
and fpr respectively [3]. When we have tpr and fpr, the point (fpr, trp) is said to be in
ROC space. An example is shown in �gure 5.1.

Figure 5.1: An example confusion matrix for a two class problem. TP: 33/35 = 0.94 FP: 4/35
= 0.11, yields the point (0.11, 0.94) in ROC space.

Note that the above is true for a discrete classi�er, i.e. one that outputs only a class label
[3]. Scoring classi�ers output a probability which represents the degree to which a feature
vector is a member of a class. A scoring classi�er can be easily converted into a discrete
binary classi�er by applying a threshold. The classi�er will then output positive if the
probability is higher than the threshold, and negative if the probability is lower than the
threshold. Di�erent thresholds yield a di�erent confusion matrix (a di�erent classi�cation
of the examples in the validation set), and thus yield multiple points in ROC space. If we
vary the threshold from −∞ to +∞ the so-called ROC curve is traced out.

However, note that GMLVQ is only a discrete classi�er. In the GMLVQ toolbox [1] in the
function compute_costs a distance-based score is calculated for each example x. This
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way GMLVQ becomes a sort of scoring classi�er too. A choice for a score if x is positive
is:

s = dK − dL (5.1)

And if x is negative:

s = dL − dK (5.2)

This way for each feature vector x in the validation set a score (or "probability") is cal-
culated. In the function compute_roc, by varying the threshold and for each threshold
calculating the corresponding trp and fpr di�erent points in ROC space are obtained, this
traces out an ROC curve and is a two-dimensional representation of classi�er performance.
To compare multiple classi�ers a single scalar value would be handy to deal with [3].
Therefore the area under the ROC curve (AUC) can be calculated. An important sta-
tistical property of the AUC value is that the AUC value is equivalent to the probability
that the classi�er will rank a randomly chosen positive instance higher than a randomly
chosen negative instance [3]. AUC will serve as a measure of classi�er performance in the
two-class experiments in this thesis. Performance measurement by ROC curve analysis is
especially attractive since it is insensitive to changes in class distribution and class skew
[3]. This follows directly from the fact that points in ROC space depend on tpr and fpr,
which can both be calculated with a single column in the confusion matrix. Other metrics
such as precision, accuracy and F-measure use values from both columns and are therefore
sensitive to class distribution [3].

(a) A classi�er with low performance. (b) A classi�er with good performance.

Figure 5.2: Two test set ROC plots of di�erent classi�ers resulting from cross validation, taking
the mean of tpr and fpr at every threshold. The green dot represents NPC perfor-
mance (Threshold = 0.5). Since the AUC of the right plot is higher than the AUC
of the left plot, the right classi�er's classi�cation performance was better on the
validation sets and we can expect better classi�cation performance on new data.
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Multiclass problems
For multiclass problems the performance of the classi�ers are mainly compared by the
confusion matrices.

5.2 Tecator

The tecator dataset consists of 215 labeled feature vectors (x, y) ∈ R100 × (1, 2). These
are not time series, the dataset was used for its simplicity for �rst tests of the CGMLVQ
method. Each feature vector describes the spectrometric curve which corresponds to the
absorbance at 100 wavelengths (from 850mm to 1050mm) of �nely chopped meat. The two
classes are: Meat with small fat content (138 examples) and meat with large fat content
(77 examples).

Figure 5.3: 10 examples taken from each class in the Tecator dataset

As can be observed from �gure B.1, one particular di�erence between the two classes is
in features 30-50 (Wave length 910-950nm). In class 2, the meat samples with high fat, a
twist can be observed which is never present in these class 1 examples, the low fat-class.
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(a) Magnitude plots of �rst 10 example of each
class of the Tecator dataset

(b) Phase plots of �rst 10 example of each class
of the Tecator dataset

Figure 5.4: Frequency spectra: 10 examples from each class

(a) Training error development. (b) Validation error development.

Figure 5.5: Training curves of learning of the three di�erent approaches (See legend). Learning
in Fourier space achieves a slightly lower error.

Figure 5.5 shows the error percentages on the training and validation set while training in
Original space, complex Fourier space and concatenated Fourier space. The Fourier space
representations achieve a slightly lower error rate than the original space.
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Figure 5.6: Comparison of the validation performance expressed as AUC values in dependence of
the number of coe�cients. The black, green, and blue solid lines represent the AUC
value for the classi�cation in original space, concatenated- and complex coe�cient
space respectively. Note that the blue solid line is behind the green line. Blue cir-

cles represent results achieved in complex Fourier coe�cient space at n frequencies.
Green squares represent results achieved in concatenated Fourier coe�cient space
at n frequencies. Red diamonds represent performance as achieved from smoothing
of the data only.

(a) Cross validation 20% val. 5 runs (b) One run 50% val.

Figure 5.7: Confusion matrices as obtained for two di�erent test cases, both as a resulting
from learning in 10-coe�cient Fourier space. The results are similar for the cross
validation with 20% of the examples dedicated to validation (left) and the pre-
speci�ed split with 50% dedicated to validation (right).

In �gure 5.6 the results from cross validation are shown (mean of 5 runs) in which 20% of
the vectors were taken for validation. The resulting classi�ers for all the strategies perform
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well on the validation sets as concluded from �gure 5.6: The AUC of the classi�er on
the validation set in original space, concat space and complex space is consistently high.
Although the di�erences are small, the AUC of the Wirtinger- and concatenation method
is exactly 1 in all cases while the AUC of the classi�er in the original space is a tiny bit
lower.

We can see that in the Fourier space with as few as 10 (or even 5) Fourier coe�cients
the examples can already be assigned with high accuracy into the correct classes. The
corresponding classi�cation in the case of 10 Fourier coe�cients is shown in �gure 5.7a,
only small error is made in the classi�cation of class 2 validation examples. In another
test, the dataset was split in 107 training vectors and 108 validation vectors and training
and validation was applied in the space of 10 Fourier coe�cients. In �gure 5.7b the corre-
sponding confusion matrix is shown in which it can be seen that only one misclassi�cation
was made.

(a) Prototypes training in original space. (b) Prototypes full Fourier space.

(c) Feature relevance in Fourier space. (d) Backtransformed prototypes 10 coe�cients.

Figure 5.8: The prototypes as resulted from training in original space and from training in
coe�cient space. Figure c shows the relevance pro�le in coe�cient space, indicating
that the the most relevant coe�cients are among the �rst 10 coe�cients.

In �gure 5.8c the feature relevance in full Fourier space is plotted (diagonal Λc matrix),
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in which it shows that the discriminative power is mainly in the 10 lower frequency coe�-
cients.

Note that this dataset was chosen as a simple dataset to verify the correctness of the im-
plementation of CGMLVQ based on Wirtinger derivatives. However, even for this dataset
there are some bene�ts in the functional representation of the data. The clear bene�t of
the functional representation is the reduction of the dimensionality; The representation
with 10 coe�cients still gave at least as good performance while the dimensionality was
reduced by 90% compared to the dimensionality in the original space. Although the results
in �gure 5.6 are close to each other, a consistent AUC value of 1 was measured in Fourier
space, while slightly lower values were measured in original space and back transformed
original space. This may indicate that the functional representation itself is bene�cial
for the classi�cation, and not only the smoothing of the data that was introduced in the
truncated Fourier versions.

5.3 Plane

The plane dataset [2] consists of 210 labeled feature vectors representing time series of the
form (x, y) ∈ R144×{1, 2, 3, 4, 5, 6, 7}. 105 examples are dedicated for training and 105 for
validation in the prespeci�ed split in the repository.

Figure 5.9: The feature vectors in the training set.
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Figure 5.10: The magnitude plots of the features vectors in the training set.

An analysis of �gure 5.9 reveals that examples in the di�erent classes have a periodic
nature. For this reason the Fourier transform would make more sense as a functional
representation of the discrete sampled time series. The di�erence between the classes is
well observable; The amplitude of the di�erent oscillations between the classes di�ers, as
well as the frequency. However, the classes that resemble each other the most are class 6
and 7, represented by black and yellow. In �gure 5.10 the amplitude plot is drawn. In this
plot the characteristics of the classes can be observed; For instance the light blue peak is
at a higher frequency than the pink peak. This is in accordance with �gure 5.9 in which
the light blue class has a higher frequency more present in it and the pink class a lower
frequency. Similar argumentation is relevant to the rest of the spectra.

Along the lines of the �rst strategy the results that arise when performing GMLVQ training
(one prototype per class) in the original space of the data is performed. In �gure A.1 the
training statistics per epoch (cost, error, etc) on the train set are shown. As becomes clear
from �gure 5.9 there are no outliers observed in the training set. This is in accordance
with the results in �gure A.1 in which the cost function achieves a value close to -1 and the
error on the train set is 0; GMLVQ has been able to achieve a positioning of the prototypes
and relevance matrix such that all examples in the training set are classi�ed correctly.

The performance of the resulting classi�er on the validation set is shown as a confusion
matrix in �gure 5.13a. A few errors have been made on the validation set in classifying
examples that belong to class 2 and 3.

The training set statistics as arisen from GMLVQ on the full Fourier spectra of the data
(x ∈ C73) are shown in �gure A.2. The results are similar to the results obtained from
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the training in the original space. Also by comparing the resulting prototypes in the real
space (�gure 5.12a) and those resulted in the coe�cient space (�gure 5.12c) it becomes
apparent that they are almost identical. In �gure 5.12d the Fourier coe�cients most rel-
evant in this classi�cation problem are shown. The coe�cients that represent the lower
frequencies are among the most relevant coe�cients in the spectrum. Figure 5.11 shows the
development of the train- and validation error during training for the Wirtinger complex
Fourier-, concatenation- and the original space approach. On the validation set classi�ca-
tion in complex Fourier space and in original space reach the same error percentage. The
concatenation approach reaches a higher error.

(a) Training error development. (b) Validation error development.

Figure 5.11: Training curves for learning in original space, complex Fourier space and concate-
nated Fourier space.
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(a) Resulting prototypes training in real space. (b) Relevances of the real dimensions.

(c) Back transformed prototypes training in co-
e�cient space. (d) Relevances of the Fourier coe�cients.

Figure 5.12: The prototypes and feature relevance of learning in original space (Fig. 5.12a,
5.12b) and coe�cient space (Fig. 5.12c, 5.12d).

With 20 coe�cients the classi�cation performance on the validation set is better than the
performance in the original space. Figure 5.13 shows the performance for di�erent cases on
the validation set by confusion matrices. In the confusion matrix from the original space,
small error was made in the classi�cation of class 2 and 3 on the validation examples
(Figure 5.13a). In �gure 5.13b in which spectra truncated at 20 frequencies were used, it
turns out that the classi�cation of the validation set went without error. As was shown in
�gure 5.12d On this dataset the main discriminative features are in the lower 20 coe�cients
and this may explain the good performance with as few as 20 coe�cients (which is 14% of
the original dimensionality) compared to the performance in the original space.
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(a) Original space (b) 20 coe�cients

(c) 25 coe�cients (d) 30 coe�cients

Figure 5.13: Confusion matrices in percentages as obtained for learning in original space (Fig.
5.13a) and Fourier space truncated at di�erent numbers of coe�cients (Fig. 5.13b,
5.13c, 5.13d).

In �gure 5.14a the back transformed prototypes for the case n = 20 are displayed. Since
most information was in the lower frequencies, they are very similar to the prototypes in
original space (�gure 5.12a). The di�erence being that the prototypes in 20 coe�cient space
are slightly smoother than the prototypes in the original space because of the omission of
the higher frequencies.
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(a) The prototypes which resulted from training
on 20 Fourier coe�cients back transformed. (b) Feature relevance 20 coe�cients.

Figure 5.14: Prototypes and feature relevance as obtained for learning in 20-Fourier coe�cient
space. The prototypes are transformed back to the original space and a comparison
with �g. 5.12a shows that the two resemble each other closely. The prototypes in
20-Fourier coe�cient space are smoother than in original space.

The plane dataset turned out to be an appropriate dataset for classi�cation in the Fourier
space. This is supported by the experiment but also the observation that the data has a
periodic nature. In the tests it was shown that with only 20 Fourier coe�cients (A reduction
of 86% of the dimensionality in the time domain) a better classi�cation performance in
the validation was obtained than the performance in the original space. The prototypes
that resulted from the back transformation of the 20 coe�cient-spectra to the time domain
closely resembled the prototypes that arose from training in the time domain.

5.4 MALLAT

The MALLAT dataset [2] consists of 2400 labeled feature vectors (x, y) ∈ R1024 ×
{1, 2, 3, 4, 5, 6, 7, 8} representing time series in eight di�erent classes. In the prespeci�ed
split in the UCR repository 55 of the vectors are assigned for training and 2345 for valida-
tion.
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Figure 5.15: Training examples MALLAT

Figure 5.16: Training examples MALLAT: Magnitude plots.
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In �gure 5.15 the examples show a presence of low- and high frequency oscillations.

(a) Training error development. (b) Validation error development.

Figure 5.17: Training curves for the three methods (see legend). Over�tting occurs in the orig-
inal space after 50 epochs as the validation error increases. In coe�cient space,
the over�tting does not happen (or far-less), the result is that both Fourier space
representations achieve a lower error.)

Figure 5.17 shows the development of the training- and validation error during training.
On the train set all the methods achieve zero error. On the validation set (�g. 5.17b) the
Wirtinger method achieves the lowest error, followed by the concatenation method. The
method in the original space achieves the highest error. After 50 epochs the validation
error in the original space increases, indicating a presence of over�tting that arises in
original space. As was mentioned in the introduction, in recent research it was claimed
that training in coe�cient space can help to reduce over�tting e�ects. Here we indeed see
that the over�tting e�ect is far-less present in coe�cient space, in accordance with the
claim in recent research.

In �gure 5.18 we see the classi�ers (prototypes and diagonal of matrix) of the classi�er in
original space (�gure 5.18a and 5.18b) and in Fourier space (�gure 5.18c and 5.18d). In
�gure 5.18d the information in the high frequency coe�cients appears to have low relevance
in the classi�cation. The highest peaks are the in the �rst 0-80 Fourier coe�cients.
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(a) Prototypes in original space. (b) Feature relevance original space.

(c) Prototypes backtransformed from Fourier
space. (d) Feature relevance Fourier space.

Figure 5.18: The prototypes and feature relevance of learning in original space (Fig. 5.18a,
5.18b) and coe�cient space (Fig. 5.18c, 5.18d).

From the confusion matrices in �gure 5.19 which indicate the exact classi�cations of the
examples in the validation set we see that the performance of the approximation with 20
Fourier coe�cients (2% of the original dimensionality) is better than the performance in
original space: 202 misclassi�cations in 20 coe�cient Fourier space vs. 251 misclassi�ca-
tions in original space. When the data was transformed from an approximation with 20
coe�cients to the original space and training was applied in original space, 220 misclas-
si�cations were recorded (�g. 5.19d). Since this performance is better than the raw data
in original space but worse than performance in coe�cient space, both smoothing and
the functional representation, namely the Fourier representation of the time series, have a
positive e�ect on performance.
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(a) Original (b) Full Fourier

(c) 20 comp. coe�cients (d) 20 coe�cients back transformed

Figure 5.19: Confusion matrices as obtained for learning in original space (Fig. 5.19a), Full
Fourier space (Fig. 5.19b), 20-coe�cient Fourier space (Fig. 5.19c), original space
after a back transformation from 20-coe�cient Fourier space (Fig. 5.19d).

5.5 Symbols

The dataset Symbols [2] consists of 1020 labeled feature vectors (x, y) ∈ R398 ×
(1, 2, 3, 4, 5, 6). 25 of the feature vectors are speci�ed as training examples and 995 as
validation examples.
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Figure 5.20: The training examples of the "Symbols" dataset.

Figure 5.21: Magnitude plots of the training examples in the "Symbols" dataset.
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In �gure 5.20 the training set is displayed. The time series show periodic behavior, espe-
cially the classes 4, 5 and 6. The 4th and 5th classes show around four oscillations, the
6th class half an oscillation. The time series of the classes 1 and 2 lie close to each other,
but the examples from class 2 show oscillations of a higher amplitude. Both classes 1 and
2 have higher frequency components in them compared to the other classes. In �gure 5.21
the characteristics can be observed; A large yellow peak representing the low frequency
component in examples of class 6 and a few frequencies higher a large pink peak repre-
senting three or four oscillations in class 5. We also observe the considerable amplitudes
of class 1 and 2 at the higher frequencies.

The two pairs of classes that would be most di�cult to classify is the pair (1,2) and the
pair (4,5). Both of these classes show a considerable overlap.

First the classi�er has been trained on the training set in the original space of the data.
The results in �gure A.5 show that the cost function per example approaches -1 and 0
training error is achieved. Figure 5.25a shows the validation performance of the resulting
classi�er on the 995 validation examples. We see that the classi�er has a low error rate
in classifying examples labeled (1,3). Indeed the errors made by the classi�er are higher
on validation examples labeled (2,4,5). More than half of the examples labeled 2 has been
classi�ed as 1.

In �gure A.5 the training set performance is displayed when the dataset is represented with
all Fourier coe�cients. (x ∈ C200). Similar results are achieved compared to training in
the original space. However, there are di�erences in the validation as seen in �gure 5.25b.
Classi�cation of class 6 examples achieves a signi�cantly better result in the Fourier space
in which it went almost without error. Also classi�cation of class 4 examples has improved
by 30%.
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(a) Resulting prototypes training in real space. (b) Relevances of the real dimensions.

(c) Back transformed prototypes training in co-
e�cient space. (d) Relevances of the Fourier coe�cients.

Figure 5.22: The prototypes and feature relevance of learning in original space (Fig. 5.22a,
5.22b) and coe�cient space (Fig. 5.22c, 5.22d).

From �gure 5.22d it can be seen that the lower coe�cients (below the 20th coe�cient)
contain peaks indicating high relevance.

As we have seen, the performance in the coe�cient space is better than the performance
in the real space. This is mainly because the examples of class 4 and 6 are much better
classi�ed in the coe�cient space than in the real space. In �gure 5.25c which shows the
results of the 20 coe�cients case classi�er performance is similar to the performance in
the full Fourier coe�cient space. Therefore performance does not decrease much when
approximating the time series with 20 Fourier coe�cients. For these reasons the bene�ts
of the Fourier representation for this dataset are a better classi�cation rate and the op-
portunity to reduce the dimensionality. However, the classi�cation performance of class 2
and 5 examples remains poor.
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Figure 5.23: Comparison of the validation performance expressed as AUC values in dependence
of the number of coe�cients (Class 1 vs others). The black, green, and blue solid
lines represent the AUC value for the classi�cation in original space, concatenated-
and complex coe�cient space respectively.Blue circles represent results achieved in
complex Fourier coe�cient space at n frequencies. Green squares represent results
achieved in concatenated Fourier coe�cient space at n frequencies. Red diamonds

represent performance as achieved from smoothing of the data only.

Figure 5.24: Mean of 5 runs, AUC values on validation set (Class 1 vs others, 30% of the data).
Solid blue line: AUC full complex Fourier space. Blue circles: AUC complex
Fourier space truncated at n frequencies. Solid green line: AUC full concatenated
Fourier space. Green circles: AUC concatenated Fourier space truncated at n
frequencies.
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(a) Original space (b) Original space

(c) 20 coe�cients (d) 25 coe�cients

Figure 5.25: Confusion matrices as obtained for learning on the prespeci�ed training set.

As discussed earlier, class 2 is overlaps with class 3 and class 5 overlaps with class 4. The
prespeci�ed training set is probably too small to learn the di�erences between the classes
correctly. To test this assumption an experiment has been performed in which 70% of the
data is for training and 30% for validation. The tests results are the mean of 5 runs. As
shown in 5.26 the classi�cation accuracy for the problematic classes 2 and 5 has increased
signi�cantly in all cases. Also the classi�cation in the original space has a much better
accuracy, this leads to the assumption that the classi�er in the original space needed more
training examples for the same level of accuracy than the classi�er in the Fourier space.
In case the time series are approximated with 20 coe�cients (5% of the dimensionality in
the original domain) the classi�er is almost as accurate as the classi�cation in the original
domain. (Figure 5.26c).
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(a) Original space (b) Fourier space

(c) 20 coe�cients (d) 25 coe�cients

(e) 30 coe�cients (f) 35 coe�cients

Figure 5.26: Mean of the confusion matrices as obtained from 5 runs on a variable validation
set consisting of 30% of the data, training on the other 70%. The performance in
20-coe�cient Fourier space (Fig. 5.26c) is close to the performance in the original
space (Fig. 5.26a).
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The analysis showed that for the dataset Symbols there are advantages of representing
the time series examples in the Fourier space. This became apparent by analysis of the
performance on the prespeci�ed train/validation set, and also by analysis of the results of
the cross validation. In the �rst classi�cation of speci�c classes became more accurate in
the frequency domain, also on as few as 20 coe�cients. In the cross validation it turned
out that using 20 Fourier coe�cients (5% of the dimensionality in the original space) gave
a performance close to the performance as observed in the original domain.
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6 Final thoughts

The classi�cation of time series in Fourier space has proven to be bene�cial compared to
original space, especially in certain cases. In time series with a periodic nature the Fourier
functional representation is suitable because of the sinusoidal basis functions and proved to
be bene�cial to classi�cation results. The same or better performance was achieved with a
Fourier approximation truncated at n coe�cients in all experiments. In line with previous
research, training in Fourier coe�cient space also reduced over�tting e�ects (MALLAT
experiment). The performance gain in Fourier space can be explained by the appropriate
functional representation in case of periodic time series data. Note that the truncation at n
coe�cients yielded a reduction in dimensionality sometimes as high as 80-90%. This leads
to a huge speed-up in the training process since the number of free parameters is reduced
quadratically (Quadratic because of the Ω matrix). Note that in some experiments, for
example the plane dataset, the performance in original space and truncated Fourier space
was similar. Still, using the Fourier transform as a means for dimensionality reduction is
a signi�cant bene�t while keeping the same or similar performance.

In Fourier space, the complex Wirtinger method showed a similar performance in the ex-
periments than the conventional concatenation method on the datasets which were tested.
However there were bene�ts of Wirtinger GMLVQ: The number of free parameters is re-
duced and the method respects the complex nature of the data. Prototypes are in the
same complex space as the data and the matrix accounts for the relevance of the complex
dimensions. The method can therefore also account for correlations between the complex
dimensions. The concatenation method may be more appropriate if the correlations are
mainly between real- and imaginary parts.

For future study, note that in this thesis cross validation tests were performed in Fourier
space truncated at n frequencies for di�erent n and the results were interpreted. Generally,
the performance was robust for di�erent n and one speci�c n was chosen to discuss in more
detail. This n generally satis�ed the criteria of good performance and signi�cantly lower
dimensionality. A systematic approach for identifying the optimal number of coe�cients
could be an interesting continuation for future research. Note that this suggestion was made
in [9], and such a method/approach will also be of great value for time series classi�cation
in Fourier space.
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A.1 Plane

Figure A.1: Learning in original space.
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Figure A.2: Learning in Fourier space.
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A.2 Mallat

Figure A.3: Learning in original space.
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Figure A.4: Learning in Fourier space.
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A.3 Symbols

Figure A.5: Learning in original space.
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Figure A.6: Learning in Fourier space.
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B Appendix: Functions

This document describes the most important functions that were created for the project.
For the benchmark tests, the following folders need to be added to PATH in Matlab:
benchmarks, display, fourier.

B.1 UCR dataset struct

st = LoadData(name)

Function loads a dataset with name from the UCR repository, provided that the repository
(UCR_TS_Archive_2015) is available in the root of the project.

• name: The name of the UCR dataset.

• st: A struct representing the dataset.

� tra: The training set.

� val: The validation set.

� lbltra: The labels of the examples in the training set.

� lblval: The labels of the examples in the validation set.

� fvec: The concatenation of training- and validation set (See function B.3).

� lbl: The concatenation of the labels of the training- and validation set (See
function B.3).

B.2 Fourier

Y = Fourier(x, r)

Wrapper around �t to obtain Fourier series of x at truncated at r coe�cients. Ignores the
symmetric part of the spectrum.
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• x: Input vector (representing for example a time series).

• r: The desired number of coe�cients to keep.

• Y: One-sided Fourier domain representation of x.

y = iFourier(X, L)

Wrapper around i�t to retrieve the original time domain signal y, given Fourier coe�cients
X and the length L of the original time domain signal.

• X: Vector of Fourier coe�cients.

• L: The length of the original time series.

• y: The original time series.

st = takeFourierAt(st,r,type)

Takes a struct st as returned from loadData(name) (Function B.1) and attaches three
additional structs to st:

• FourierComp: Complex Fourier representation (of training- and validation set)
truncated at r coe�cients.

• FourierConc: Concatenated Fourier representation (of training- and validation set)
truncated at r coe�cients.

• back: Original domain (of training- and validation set) after a truncation in Fourier
space truncated at r coe�cients.

Use type = 1 for an UCR struct as returned from the function B.1. Use type = 2 for a
struct which does not have a prespeci�ed training/validation split.

B.3 Benchmark

st = do_benchmark(st,epochs,plbl,maxF,name)

Function for benchmarking a dataset with a speci�ed train/validation set. First learning
in the original space is performed. Then learning in complex- and concatenated Fourier
space is performed. Last, learning in truncated complex- and concatenated Fourier space
is performed, and original space after a transform to truncated Fourier space and back
transform to original space. The benchmark results, benchout, are attached to the struct
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st. The graphical display of the results (AUC- and confusion matrices) are plotted and
saved in the project root in the folder name.

• st: Struct as obtained from function B.1 to be benchmark tested.

• epochs: Number of epochs that should be performed in one test.

• plbl: The prototype labels.

• maxF: The maximum number of coe�cients to be considered.

• name: The name of the folder to store the results in.

As an example, say we want to test the strategies on the Plane dataset from the UCR
repository. First we load the dataset:

1 >> plane = loadData(’Plane’)
2
3 plane =
4
5 lbltra: [105x1 double]
6 lblval: [105x1 double]
7 tra: [105x144 double]
8 val: [105x144 double]
9 fvec: [210x144 double]
10 lbl: [210x1 double]

Then we run the do_benchmark function, indicating that all the results should be saved
in the folder Plane:

1 >> plane = do_benchmark(plane,10,1:7,10,’Plane’)
2
3 plane =
4
5 lbltra: [105x1 double]
6 lblval: [105x1 double]
7 tra: [105x144 double]
8 val: [105x144 double]
9 fvec: [210x144 double]
10 lbl: [210x1 double]
11 FourierComp: [1x1 struct]
12 FourierConc: [1x1 struct]
13 back: [1x1 struct]
14 benchout: [1x1 struct]

As can be seen, the struct now contains the two Fourier representations, the smoothed
version and the results of the benchmark in benchout. All the �gures are plotted by
default, and stored in the chosen folder (in this case Plane).
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Figure B.1: Benchmark results including AUC curve that shows the AUC values for the di�erent
strategies, the confusion matrices as obtained in the di�erent strategies and several
error curves.

st = do_cross_benchmark(st,nruns,epochs,prctg,plbl,maxF,name)

Similar to the function do_benchmark (Function B.3). However, this function performs
a cross validation of nruns using prct% of the examples for validation. The mean of
the AUCs and the confusion matrices are plotted and saved in the project root in the
folder name. In case the struct st represents a dataset from the UCR repository, the
training- and validation set are simply concatenated and cross validation is performed on
this concatenated set.

• st: Struct as obtained from function B.1 to be benchmark tested.

• epochs: Number of epochs that should be performed in one test.

• plbl: The prototype labels.

• maxF: The maximum number of coe�cients to be considered.

• name: The name of the folder to store the results in.
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Additional experiment on Wine dataset.

C.1 Wine

The dataset Wine from the UCR repository has 111 labeled feature vectors (x, y) ∈ R243×
(1, 2).

Figure C.1: 10 examples from each class of the Wine dataset in the original real-valued domain

The examples show small variations between the two classes in the original space and in
Fourier space.
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(a) Magnitude plots of �rst 10 example of each
class of the Wine dataset

(b) Phase plots of �rst 10 example of each class
of the Wine dataset

Figure C.2: Frequency spectra: 10 examples from each class

(a) In this approach the higher frequencies are
gradually cut o�.

(b) In this approach the n most relevant frequen-
cies are kept.

Figure C.3: Benchmark results of the di�erent strategies. The black solid line is the performance
when the classi�ers were trained in the original space. The results of the Wirtinger
GMLVQ are in blue, with the solid line indicating the performance on all the Fourier
coe�cients. The results of the concatenation representation are in green, the green
line indicates the performance on all the Fourier coe�cients. The diamonds in
red is the performance on the backtransformed data to the original space after
smoothing/truncation in coe�cient space.

In �gure C.3 the benchmark results on the Wine dataset are shown. All the classi�ers
in the Fourier space show a better performance than than the classi�ers in the original
domain. From �gure C.3a it appears that good classi�ers are obtained when trained on
20 coe�cients. In general, the performance of training on the complex coe�cients and the
performance of training on the concatenated real and imaginary parts seem to lie close to
each other, but we observe that in the range [20...80] the training on the complex coe�cients
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performs slightly better. It also appears that there is a negative e�ect on performance the
more higher frequency coe�cients are in the spectra. The red diamonds show the third
scenario in which the data is smoothed only. We see that in this case the AUC values do
not exceed the AUC value from training in the original space. The improvement as seen
in training in Fourier coe�cient space can therefore not be explained as an e�ect of the
smoothing only.

In �gure C.3b GMLVQ is applied on the n most relevant coe�cients. In this case we also
observe good performance at 20 coe�cients. No big performance loss is observed when
considering more coe�cients. There are some higher coe�cients that are important for
the classi�cation and there are some middle-high coe�cients that are not important.

Figure C.4: The relevances of the Fourier coe�cients as learned by GMLVQ after training on
400 epochs.

From �gure C.4 we see that the fourth highest coe�cient turns out to be quite relevant for
the classi�cation. This coe�cient was not considered in the tests in �gure C.3a, but it was
considered in the tests in �gure C.3b. It also turns out that some middle-high frequencies
are of very low relevance: The 26th highest frequency has no relevance, and in general
frequencies in that area are of low importance. This explains the results from �gure C.3
since these frequencies were considered in �gure C.3a, yielding a decrease in performance.
Because of their low relevance, these frequencies were not considered in �gure C.3b, this
might explain the stable performance.

For this dataset, which does not seem to be a dataset which is particularly suitable for a
Fourier representation, performance gains have been obtained. On 20-Fourier coe�cients,
the performance was better than the performance in the original space while reducing the
dimensionality with 91%.
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Figure C.5: The diagonal of Omega.

(a) Prototypes that resulted from training in the
original space.

(b) Prototypes that resulted from training on 20
Fourier coe�cients
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