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Abstract. Understanding the influence of activation functions on the
learning behaviour of neural networks is of great practical interest. The
GELU, being similar to swish and ReLU, is analysed for soft committee
machines in the statistical physics framework of off-line learning. We find
phase transitions with respect to the relative training set size, which are
always continuous. This result rules out the hypothesis that convexity is
necessary for continuous phase transitions. Moreover, we show that even
a small contribution of a sigmoidal function like erf in combination with
GELU leads to a discontinuous transition.

1 Introduction

The success of artificial neural networks in recent years is partly attributed to
the use of specific activation functions, such as the prominent ReLU, see e.g.
[1]. Here, we study the use of the Gaussian Error Linear Unit (GELU) [1, 2]
activation: GELU(x, γ) := x

2

(
1 + erf

[
γx/

√
2
])

. (1)

The GELU is of practical importance as it displays the same properties as the
often used swish activation [1]. In fact, for appropriate choices of its slope pa-

rameter, see [1], swish and GELU are virtually indistinguishable. Furthermore,
for large γ the GELU is a smooth approximation of the popular ReLU activation
function, with the approximation becoming exact for γ→∞, see Fig. 1(a).
The statistical mechanics analysis of learning is a well-established approach to
describe the typical behaviour of learning systems [3, 4]. Here, we employ this
framework to investigate two-layered soft committee machines (SCM) in model
scenarios of supervised learning. In a recent analysis [5], it was shown that an
SCM with ReLU activation functions displays second-order, continuous phase
transitions in the generalisation error as a function of the relative data set size.
In contrast, the same architecture equipped with sigmoidal erf activations shows
first-order, discontinuous phase transitions in the learning curves [5, 6]. This is
a result of practical relevance, because in the presence of a first-order transition,
suboptimal states coexist and compete with well performing configurations of
the network. This can hinder the success of training significantly as the system
may get stuck in these unfavourable states.
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Fig. 1: (a) The GELU for γ = 1 (solid) and γ = 10 (dashed), and the swish
activation function (dotted) with slope parameter set to 1. (b) The GELU(x, 1)
(solid), ErfGELU(x, 1, 0.75) (dotted), cf. Eq. (4), and erf[x/

√
2] (dashed).

In the following, we investigate the learning behaviour of SCM networks with
GELU-activation along the same lines, and show that they exhibit continuous
transitions like in the limiting case of the ReLU. Our results indicate that
the nature of the phase transition does not depend on the convexity of the
activation function, since both the sigmoidal erf and the GELU are non-convex,
but exhibit different types of transitions. In addition, we consider activations
that can be expressed as a superposition of GELU and erf. We find that even a
small contribution of the sigmoidal function leads to a discontinuous transition.

2 Model Setup and Analysis

We briefly summarise the modelling framework and sketch the statistical physics
based analysis. For a more detailed presentation we refer to [5]. The learning
behaviour of an SCM with GELU activation function is analysed in a student-
teacher setting with a fixed teacher network representing the task to be learned
by a student network of perfectly matching complexity. Only the first layer
weights of the student network are adaptable in the training process. The output
of the student network σ(ξ) and the teacher output τ(ξ) are defined as

σ(ξ) := 1
√

K

∑K

k=1 g
(

wk· ξ√

N

)
, τ(ξ) := 1

√

K

∑K

m=1 g
(

w
∗

m
· ξ

√

N

)
, (2)

with g : R → R being the GELU activation function of a given slope γ. The
weights of both networks are collected in weight vectors, where wk ∈ R

N con-
tains the weights from the input layer to the k-th hidden unit in the student
and w∗

m ∈ R
N is the respective weight vector for the teacher’s m-th hidden unit.

We consider systems with normalised student weight vectors and orthonormal
teacher vectors: w∗

m ·w∗

n = δmn.

In the equilibrium statistical mechanics approach to off-line learning the assump-
tion is that the student network is provided with a set of training data of size
P , {ξµ, τ(ξµ)}Pµ=1. Training is guided by the minimisation of a cost function

E =
∑P

µ=1 [σ(ξ
µ)− τ(ξµ)]

2
/2. In the simplest setting, components of the ξµ

are assumed to be i.i.d random numbers with zero mean and unit variance [3, 4].
An appropriate training process will eventually lead to an equilibrium state in
the weight space of the network which can be described by a Gibbs-Boltzmann
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Fig. 2: Learning curves for the GELU with γ = 1 and different values of the
hidden layer size, K=5 (dotted), K=10 (solid) andK =50 (dashed). (a) The
order parameters R and S separate after the transition point of the continuous
transition with R being the upper curve and S the lower curve for each respective
case. (b) The order parameter C also differs in its scaling with K before and
after the phase transition at αc ≈ 5.58.

density of states proportional to exp(−βE) [3, 4], where β plays the formal role
of an inverse temperature. Equilibrium configurations of large networks in the
limit N → ∞ and averaged over randomised data sets of a given size, display
typical properties of learning systems in terms of their learning curves. Here
we resort to the simplifying limit of training at high temperature [3, 4, 5]. For
β → 0, the Gibbs-Boltzmann density is dominated by the minima of the free

energy βf = αKǫg − s, which can be evaluated for a given relative data set
size α = βP/(KN). The entropy term s can be worked out independently of
model details such as the activation functions, see e.g. [5]. They do however
determine the functional form of the generalisation error ǫg, which is defined as
the mean squared deviation of student and teacher output, averaged over the
data distribution:

ǫg :=
〈

1
2

[
σ(ξ)− τ(ξ)

]2〉

{ξ}
=

〈
1

2K

[∑K
k=1 g(xk)−

∑K
m=1 g(x

∗

m)
]2〉

{x,x∗}

. (3)

The respective network output σ, τ only depends on the inputs ξ via the pre-

activations : xk := wk · ξ/
√
N and x∗

m := w∗

m · ξ/
√
N . In the limit N → ∞,

xk and x∗

n become zero mean Gaussian variables according to the central limit
theorem [5]. Hence, ǫg is obtained as a multi-dimensional Gaussian integral and
depends only on the covariances of the pre-activations. These are called order
parameters in statistical mechanics jargon and are defined as Qik := 〈xixk〉 =
wi · wk/N and Rin := 〈xix

∗

n〉 = wi · w∗

n/N . In addition, we have 〈x∗

mx∗

n〉 =
w∗

m·w∗

n/N = δmn. The order parameters are also referred to as overlaps between
the weight vectors due to their expression in terms of scalar products.
We consider a simplifying site-symmetric ansatz [5, 6] with Qik = δik + (1 −
δik)C and Rin = δinR + (1 − δin)S. This restriction allows for unspecialised
configurations with R = S, where all student hidden units perform essentially
the same task. The ansatz also admits the case in which the normalised student
weight vectors specialise with respect to exactly one of the teacher weight vectors
(R > S) and perfect agreement with ǫg = 0 can be achieved.
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Fig. 3: Learning curves showing the continuous specialisation transition for the
GELU for K = 5. (a) The order parameters R and S for different values of the
slope parameter γ = 0.5 (dotted), γ = 1 (solid) and γ = 10 (dashed). (b) The
generalisation error for γ = 10 after the transition is lower in the specialised case
with R > S (solid) than in the anti-specialised case R < S (dashed).

3 Results

Learning for different values of K and γ

In Fig. 2 the learning curves for γ = 1 and different values of K show that the
order parameters R and S are equal for small α. At the critical training set
size αc, the R-values increase while the S-values decrease. In the figure only the
specialised solution with R>S is depicted, but a local minimum of f with R < S

also exists. The specialised solution can be interpreted as each student weight
vector approaching a specific weight vector of the teacher, while the overlap with
the remaining teacher vectors becomes small.
For different values of K it can be seen that the plateau value of the order
parameters before the transition point decreases as 1/K, while the relation after
the transition is ∆ = 1−KS with ∆ = R−S [6]. Fig. 2 also shows the order
parameter C, which is the overlap between different student weight vectors, for
various K. Again, one can observe a strong dependence of the values of C on K,
while the point of phase transition remains approximately the same. The value
of C scales as 1/(K−1) for small α, i.e. in the unspecialised regime and it scales
as 1/K2 in the specialised state [6].
The dependence of the learning curves on the slope parameter γ for fixed K can
be seen in Fig. 3. For small γ the transition happens at large values of α, but
for γ→∞ the transition point is αc =2π, the point of the phase transition for
the ReLU activation function [5].

Learning for K → ∞
It is instructive to consider the limit where the hidden layer becomes infinitely
large, K →∞ (but with K ≪ N), since in this limit, the nature of the phase
transition becomes particularly clear. Moreover, it allows extending the analy-
sis to learning at finite temperatures as demonstrated in [6]. For K →∞ and
for specialised solutions discussed in the previous section, the ansatz R = ∆,
S = (1 − ∆)/K and C = 0 can be justified [6]. The only remaining order pa-
rameter is then ∆, so minimising the free energy reduces to finding solutions of
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Fig. 4: K →∞-analysis of the GELU. (a) α(γ,∆) for γ = 0.5 (dotted), γ = 1
(solid) and γ = 10 (dashed). (b) The value of α where the continuous phase
transition happens, αc, as a function of the slope parameter γ.

∂f(α, γ,∆)/∂∆ = 0. This is not easily solvable for ∆, but straightforward to
solve for α, resulting in functions α(γ,∆), which can be seen for some values
of γ in Fig. 4(a). The minimal value of α for which there exists a solution to
∂f(α, γ,∆)/∂∆ = 0, i.e. the minimal value of α(γ,∆), is αc, at which the phase
transition occurs. In case of the GELU activation function αc is found at ∆=0
for all γ > 0. This means that the separation between R and S at the phase
transition is zero, i.e. it is a continuous transition for all γ > 0. The dependence
of the transition point αc on γ is depicted in Fig. 4(b). For very small γ, αc

becomes very large due to the fact that for γ → 0 the GELU becomes linear and
does not invoke a phase transition. There is an optimal value with the smallest
αc at γ =

√
2 and for γ → ∞ we recover the value αc = 2π for the ReLU

activation function [5].

ErfGELU
In search of a possible explanation for the different learning behaviour exhibited
in the off-line learning of SCMs for the different activation functions we propose
a convex combination of the GELU and the erf as a hybrid function:

ErfGELU(x, γ, δ) := (1− δ) x
2

(
1 + erf

[
γx/

√
2
])

+ δ erf
[
γx/

√
2
]
. (4)

For δ = 0 it is the GELU and for δ = 1 the erf is recovered, while values of
δ ∈ (0, 1) express an activation function which is a mixture of the two, cf. Fig.
1(b). In Fig. 5(a) the learning curves for different δ at a hidden layer size K=3
show that for δ=0 we indeed recover the GELU learning curve with a contin-
uous transition. However, for larger values of δ the transition is discontinuous,
because a jump in the order parameters is observed, which also depends on δ.
The same δ-dependence can be shown for general K including K → ∞. Per-
forming the same analysis as described in the previous section for the ErfGELU
leads to the graphs α(∆, γ, δ) that can be seen in Fig. 5(b). Again, we see that
the minimum of α with respect to ∆ depends on δ. For δ = 0 it is at ∆ = 0,
then shifts to positive values of ∆ for larger δ and for δ=1 we recover the erf
value. The derivative of α with respect to ∆ can be computed analytically and

its values in ∆=0 are given by ∂α(∆,γ,δ)
∂∆

∣∣∣
∆=0

= − 4πγ2(γ2+1)
3

δ2

(γ2+2)4(δ−1)4
.
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Fig. 5: Specialisation transition for ErfGELU with γ =1 and δ=0, i.e. GELU
(solid), δ = 0.75 (dotted) and δ = 1, i.e. erf (dashed). (a) In the learning curves
for K=3 after the transition point the upper branch is the R order parameter
and the lower branch is the S order parameter. (b) In the K → ∞ case the
function α(∆, γ, δ) shows minima at different ∆ for different δ.

Assuming non-zero γ, this can only be zero for δ = 0, i.e. the only continuous
transition occurs for δ=0, for which the activation function is the GELU.

4 Conclusion

We have shown that the use of the GELU activation function leads to a con-
tinuous phase transition in the SCM learning scenario, independent of the size
of the hidden layer and the slope parameter γ. This is consistent with the pro-
nounced similarity of GELU and ReLU. One hypothesis that our results rule
out is that the convexity of the activation function is necessary for a continuous
phase transition, which appears plausible when considering the ReLU in com-
parison with classical sigmoidal activations. As we have shown, the non-convex
GELU also causes a continuous transition. In addition, we studied a superposi-
tion of GELU and erf and find that a small contribution of the sigmoidal erf is
sufficient to cause a discontinuous transition. Future work will address scenarios
in which student and teacher architecture are mismatched with different hidden
layer sizes and/or activation functions in student and teacher. This will require
the extension of the analysis to training at low temperatures in the annealed
approximation or the replica method [3, 4, 6].
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