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Abstract

Understanding the influence of activation functions on the learning behaviour of neural networks is of
great practical interest. The GELU, being similar to swish and ReLU, is analysed for soft committee
machines in the statistical physics framework of off-line learning. We find phase transitions with respect
to the relative training set size, which are always continuous. This result rules out the hypothesis that
convexity is necessary for continuous phase transitions. Moreover, we show that even a small contribution
of a sigmoidal function like erf in combination with GELU leads to a discontinuous transition.

1. Introduction

The GELU activation function [2] is similar to the popular swish [1] and ReLU. Recent
work [5] shows that ReLU soft committee machines (SCM) display a continuous phase
transition, while SCMs with the sigmoidal erf show a discontinuous transition in the
learning curves.
We negate the hypothesis that convexity of the ReLU causes the continuous transition
by investigating the nature of the phase transition caused by the non-convex GELU.
Furthermore, we construct a hybrid activation function called the ErfGELU.
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ErfGELU(x, γ, δ) := (1− δ) GELU(x, γ) + δ erf
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Figure 1: Part (a) shows the GELU activation function for different γ as compared to
the swish. In part (b) the ErfGELU is depicted for different values of δ. For δ = 0 it is
the GELU and for δ = 1 the erf is recovered.

2. Model

The SCMs are analysed in a student-teacher scenario with a trainable student network
learning from a matched teacher network representing the task. Given the input vector
ξ ∈ RN and the activation function g, the output of the student network σ and the
pre-activations {xk}Kk=1 are:

σ(ξ) :=
1√
K

K∑
k=1

g (xk) ,

xk :=
wk · ξ√

N
.

Accordingly, the output of the teacher network is τ (ξ) := 1√
K

∑K
m=1 g (x∗m) with the

pre-activation x∗m := w∗
m · ξ/

√
N .

In the limit of high input dimension, N → ∞, a suitable off-line training result can be
expressed by a Boltzmann-distribution in student weight space. In the high temperature
limit β → 0, it is dominated by the minima of the free energy, βf = αKϵg − s, with
α = βP/(KN), the entropy s and the generalisation error defined as [3, 4, 5, 6]:

ϵg :=
〈 1

2K

[ K∑
k=1

g(xk)−
K∑

m=1

g(x∗m)
]2〉

{x,x∗}
. (3)

For N → ∞, ϵg becomes an average over the pre-activations, which are Gaussian
random variables with zero mean and covariances, called order parameters, [3, 4, 5, 6]:

Qik := ⟨xixk⟩ =
wi ·wk

N
, Rin := ⟨xix∗n⟩ =

wi ·w∗
n

N
. (4)

The site-symmetric ansatz [5, 6]:

Qik =

{
1, i = k
C, i ̸= k

Rin =

{
R, i = n
S, i ̸= n

(5)

allows for specialisation of each student vector to one specific teacher vector, where
R > S, or anti-specialised solutions with R < S.

3. Results
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Figure 2: In (a) and (b) the order parameters R (solid) and S (dashed) reveal the
different types of phase transitions. In (a) the network with GELU activation shows a
continuous transition for all γ. In contrast, for the ErfGELU, (b), we find a continuous
transition only for δ = 0 (GELU). For δ > 0 the transition is discontinuous.
In (c) and (d) the limit K → ∞ is assumed. Both figures show α(∆) with ∆ = R−S.
For the GELU activation function, (c), α is the solution to ∂f (α, γ,∆)/∂∆ = 0. In
the ErfGELU case, (d), there is also a dependence on δ. The minimum of α(∆) is the
smallest possible α minimising the free energy f and the value of ∆ at the minimum
indicates the type of phase transition: ∆min = 0-continuous transition and ∆min > 0-
discontinuous transition.
This shows again that the phase transition for the GELU is continuous (c) and if the
activation function also contains a small contribution of the erf, the transition is dis-
continuous (d).

4. Conclusion

• Using the GELU activation function leads to a continuous phase transition in
the SCM.

• Convexity of the activation function is not the distinguishing feature for a
continuous transition.

• A small contribution of the sigmoidal erf to the GELU is sufficient to cause a dis-
continuous transition.
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