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Dynamical Systems

▪ Dynamical Systems
1. state space
2. time evolution rule (dynamics)

▪ Fluid Dynamics
• model the flow of fluids
• partial differential equations (PDEs)
• non-linear Navier-Stokes equations

▪ wide range of applications
• active flow control and shape optimization [1]

• wind energy, combustion, nuclear fusion [2]
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Fig.1a Wave equation 

Fig.1b Heat equation 

[1] J. Rabault, F. Ren, W. Zhang, H. Tang, and H. Xu, “Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization,” J 
Hydrodyn, vol. 32, no. 2, pp. 234–246, Apr. 2020
[2] S. Werner and S. Peitz, “Learning a model is paramount for sample efficiency in reinforcement learning control of PDEs.” arXiv, Mar. 13, 2023.



Rayleigh-Bénard Convection (RBC)
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▪ layer of fluid heated from below

▪ turbulent fluid motion

▪ models energy/heat transfer through 

convection and conduction

▪ Model thermal convection in nature

▪ oceans and atmosphere

▪ motion of gases in stars

▪ Key parameters:

▪ Rayleigh nr. (Ra)

▪ Prandtl nr. (Pr)

Eq.1. governing PDE[1]

Fig.2 time evolution of temperature field T

[1] “Demo - Rayleigh Benard — shenfun 4.1.4 documentation.” [Online].
Available: https://shenfun.readthedocs.io/en/latest/rayleighbenard.html



Rayleigh-Bénard Convection
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Representations of the system:

1. full system state

▪ Temperature Field T

▪ Velocity Field u

2. local convective field

𝑗𝑐𝑜𝑛𝑣 = 𝑢𝑦 ∙ (𝑇 − 𝑇𝑎𝑣𝑔)

Fig.3 system state

Fig.4 local convective field



Solving Rayleigh-Bénard Convection

▪Direct Numerical Simulation Solver (DNS)
• solve Navier-Stokes equations numerically

• based on the Shenfun python package[1]

▪RBC-Dataset
• 30 episodes using different initial conditions

• 500 time steps per episode

• 15000 system states

• ~500MB of data
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[1] “Demo - Rayleigh Benard — shenfun 4.1.4 documentation.” [Online]. Available: https://shenfun.readthedocs.io/en/latest/rayleighbenard.html
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Controlling Rayleigh-Bénard Convection

▪ control strategies to suppress the 
convective heat exchange

▪ control by applying small temperature 
fluctuations to the lower boundary

▪ numerous industrial applications

▪ crystal growth processes in silicon 
wafer production [2]

▪ quality endangered by fluid motion
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Fig.5 uncontrolled RBC[1]

Fig.6 controlled RBC using RL[1]

[1] Vignon, C., Rabault, J., Vasanth, J., Alcántara-Ávila, F., Mortensen, M., & Vinuesa, R. (2023). Effective
control of two-dimensional Rayleigh–Bénard convection: Invariant multi-agent reinforcement learning is 
all you need. Physics of Fluids, 35(6), 065146.
[2] Müller G. Convection and inhomogeneities in crystal growth from the melt. In: Crystal growth from 
the melt. Springer; 1988. p. 1–136.



Controlling Rayleigh-Bénard Convection

▪ control strategies to suppress the 
convective heat exchange

▪ The Nusselt number measures the 
convective heat exchange
• ratio of convective to conductive heat flux

▪mean of the local convective field is 
proportional to the Nusselt Number:

• 𝑁𝑢 = 1 + 𝑅𝑎 ∗ 𝑃𝑟 𝑗𝑐𝑜𝑛𝑣 𝐴,𝑡
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Fig.7 Nusselt Number

Fig.8 local convective field



Control Methods for Turbulent Fluids

▪Control of turbulent fluids is not trivial
• conventional control methods fail for highly turbulent Rayleigh-

Bénard Convection

▪Model-Free Reinforcement Learning
• almost all literature on RBC

▪Problems
• massive amount of data from numerical simulations
• e.g. large 3D-RBC simulations take multiple gigabytes of raw data for 

each time step
• numerical simulations are slow

➢ need for sample efficiency and new control methods
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Model Predictive Control

▪Model-Based Reinforcement Learning

▪model system dynamics, e.g. using Machine Learning methods, 
without solving the underlying nonlinear equations

▪ online learning using Dyna

▪ data-driven Reduced-order Models to approximate the dynamics
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Modeling Rayleigh-Bénard

▪Goal: find a good architecture to model RBC in Model-
Predictive Contol

▪Paper (WIP):
• offline learning of the system dynamics

• no control applied yet

• model requirements:
• sample efficiency

• precise short-term prediction

• models in literature aim for long-term predictions
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Modeling Rayleigh-Bénard

▪Goal: find a good architecture to model RBC in Model-
Predictive Contol

▪Paper (WIP):
• proposed architecture combines:

• Dimension Reduction: Autoencoder

• Time stepping: Koopman Operator
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Dimension Reduction - Autoencoder

▪ spatial dimension of the system may be high

▪ actual dynamics can live on a low-dimensional manifold

▪Autoencoder trained on simulation data:
• convolutional autoencoder

• simple encoder/decoder with 4 convolutional layers

• evaluated latent dimensions in the range [10, 200]

15Thorben Markmann - Bielefeld University - Control of Dynamical Systems



Dimension Reduction - Autoencoder
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Fig.10 MSE vs latent dimension

Fig.11 Nusselt Number in original 

and reconstructed sequence 

Fig.12a original sequence

Fig.12b reconstructed sequence



Time Stepping

▪ Time-Stepping in latent space of AE

▪ given an input 𝑥𝑡 predict next states of 
the system (𝑥𝑡+0, 𝑥𝑡+1, … , 𝑥𝑡+𝛵)

▪Methods from Machine Learning and 
Fluid Dynamics
• Neural Networks: LSTM, GRU, …

• Gaussian Processes

• Koopman Operator

▪How to include control?
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Koopman Theory

▪ Linearization of the dynamics Ft

▪Define observable functions
on system state
• 𝑦𝑡 = 𝑔(𝑥𝑡)

• e.g. 

𝑦1

𝑦2

𝑦3

=

𝑥1

𝑥2

𝑥1
2

▪ Koopman operator K performs time 
stepping in observable function space
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Dynamics: 
𝑑

𝑑𝑡
𝑥 = 𝑓 𝑥  ⟹ 𝑥𝑘+1 = F𝑡 𝑥𝑘    

                                 (Discrete-time Update)

Koopman operator:
𝐾𝑡𝑔 = 𝑔 ∘ F𝑡  ⟹ 𝑔 𝑥𝑘+1 = 𝐾𝑡𝑔(𝑥𝑘) 
                                    (Discrete-time Update)



Koopman Theory - Example

▪Nonlinear dynamics:

ሶ𝑥1 = 𝜇𝑥1

ሶ𝑥2 = 𝜆(𝑥2 − 𝑥1
2)

▪Koopman linear system:

𝑑

𝑑𝑡

𝑦1

𝑦2

𝑦3

=
𝜇 0 0
0 𝜆 −𝜆
0 0 2𝜇

𝑦1

𝑦2

𝑦3

for  

𝑦1

𝑦2

𝑦3

=

𝑥1

𝑥2

𝑥1
2
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Koopman Operator - Pros and Cons

▪Cons:
• How to choose observable functions?
• Trade-off between dimensionality and accuracy
• Prediction is probably worse compared to nonlinear models (neural 

networks, LSTM, …)

▪Pros:
• Linear Model
• Adding control to the system is easy
• Explainability of the model
• We don’t need a perfect model for RL -> even accurate predictions of 

“only” 15 time steps can give a huge advantage in sample efficiency
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Linear Recurrent Autoencoder Network

▪Dimensionality Reduction via 
Autoencoder

▪ Timestepping via Koopman Operator

▪Combination is also called Linear 
Recurrent Autoencoder Network 
(LRAN)

▪ Learn both together
• Autoencoder learns the observable 

functions (!)
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Fig 13. Linear Recurrent Autoencoder 

Network (LRAN) architecture[1]

[1]  S. E. Otto and C. W. Rowley, “Linearly Recurrent Autoencoder Networks for Learning Dynamics,” SIAM J. Appl. Dyn. Syst., vol. 18, no. 1, pp. 558–593, Jan. 2019, doi: 10.1137/18M1177846.



Linear Recurrent Autoencoder Network

Loss function

• mean squared prediction error
• normalized MSE

• error for reconstruction and hidden var

• δ decaying weight

• β weight of reconstruction and hidden error
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Fig 13. Linear Recurrent Autoencoder 

Network (LRAN) architecture[1]

[1]  S. E. Otto and C. W. Rowley, “Linearly Recurrent Autoencoder Networks for Learning Dynamics,” SIAM J. Appl. Dyn. Syst., vol. 18, no. 1, pp. 558–593, Jan. 2019, doi: 10.1137/18M1177846.

with

,



Linear Recurrent Autoencoder Network
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▪ Some first results:
• LRAN trained on sequences of length 10

• evaluated on sequences of 50 time steps

Fig 14. mean prediction error

Fig 15. Nusselt number errorFig 13. original and predicted sequence



Experiment 1: Hyperparameters

▪Hyperparameter Sweep
• Weights β and δ

• model complexity (latent dimension and layer number)

• training sequence length
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Experiment 2: Compare to other methods

▪Combine different dimension reduction and timestepping 
techniques
• dimension reduction: POD/PCA (linear), Autoencoder (nonlinear)

• timestepping: Koopman (linear), DMD (linear), GRU (nonlinear)
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Fig 16. GRU Autoencoder for seq2seq[1]

[1] Pandey et al., “Direct Data-Driven Forecast of Local Turbulent Heat Flux in Rayleigh–Bénard Convection.”



Experiments - TODO

▪Experiment 3: Data Efficiency
• omit x% from the dataset 

▪Experiment 4: Robustness to System Parameters
• test model for increasing turbulent behavior (↑Rayleigh Number)

▪Experiment 5: Improving Koopman Operator
• sparse eigenvalues -> decrease observable dimensions

▪Experiment 6: Explore Latent/Observable Space
• visualize timestepping
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Future Work

▪ control
• Model-predictive Control

• Reinforcement Learning

▪ going gaussian
• variational autoencoders seemed to work better for dimension reduction

• how to perform timestepping?
• ELBO requires mean and variance

→ timestepping on mean and variance instead of z?

▪ working on full state instead of local convective field
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Thank you for listening
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Temperature field of numerical simulation of highly turbulent Rayleigh-Bénard convection (Rayleigh number: 1013) 
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