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• Concept drift
• Model-scenario: student-teacher setup
• Including concept drift and weight decay
• Results for the ReLU- and Erf SCM, similarities and differences
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Learning under concept drift 

• Virtual drift: Change in input density
• Real drift: Change of the target rule  

*

*J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia. 2014. A survey on concept drift adaptation. ACM Comput. Surv. 46, 4, 
Article 44 (April 2014) 

Traditional assumption in ML of stationarity is often violated
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Model scenario: On-line learning of a drifting rule

Student hypothesis Teacher rule

g(x)

• Order parameters:
• The student learns from random i.i.d. examples
                
• CLT for large N: 
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Learning dynamics of the networks (stationary)

A stream of random i.i.d. examples                         (discrete time                   ) 

At the presentation of one example  

Order parameters:

1. Quadratic error:
2. Update student weights with gradient descent:

3. Recursions of order parameters and example average

4. Consider the limit             and           and scaled time: 

Closed form available for ReLU and Erf
Only available for Erf

(continuous in the limits)

(Saad & Solla, 95)
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Introducing a random real drift

• Random change of the teacher vectors, while keeping orthonormality

• Weight decay as a mechanism of forgetting older examples

Generalization error:

Closed form expression                   available for ReLU and Erf 
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Results matching student and teacher (M=K=2)

Erf-SCM ReLU-SCM

Dots: simulations for                            (avg. of 10 runs)   

Initial conditions corresponding to no prior information about the rule:
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Sensitivity to drift

Erf-SCM ReLU-SCM

Plateau lengthPlateau length

Plateau and final eg Plateau and final eg
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Effects of weight decay

Erf-SCM ReLU-SCM

Plateau length Plateau length

Plateau and final eg Plateau and final eg
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 In the ReLU SCM, weight decay also optimizes the specialization.

Optimal weight decay values

ReLU-SCMErf-SCM
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• In the presence of concept drift, specialization possible uptill 
• Drift increases the length of the plateau
• Weight decay could improve the final generalization error.

Common to both SCM…

Main findings

Differences between the SCM…

• Weight decay increased specialization for the ReLU SCM, while it
    always deteriorated specialization in the Erf SCM.
• Weight decay reduces the plateau length for the ReLU SCM, while it
    increases the plateau length in the Erf SCM.
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Outlook

• Other types of real drift, e.g. a changing complexity of the
    rule by (de)-aligning teacher vectors

• Virtual drift by changing the density of the input data

• Increasing number of hidden units, mismatched student and teacher.

• Universal approximators: Adaptive thresholds and hidden to output weights

• Deep networks, tree-like architectures


