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On-line learning in neural networks with RelLU activation

I—Statistical physics of learning

Statistical Mechanics

m Aims to deduce macroscopic properties from microscopic
dynamic properties in systems consisting of e.g. N ~ 10?3
particles.

m Due to Central Limit Theorems (CLT), fluctuations in the

macroscopics become negligible — o decreases as O(1/v' N).
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On-line learning in neural networks with RelLU activation

I—Statistical physics of learning

Example system: Ideal paramagnet

TN

Consider N spins, each spin ¢ has a value S;:
s- {0l
-1, if |

1 N
M=— e [-1,1
N;S €[-1,1]

Magnetization:

Assume components are i.i.d with P(S; = 1) = P(S; = —1) = 1,
<Sz> =0and o = 1.

CLT: For large N, approximately M ~ N(0,1/v/N)

= M is a deterministic value for N — oo (Thermodynamic limit)
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On-line learning in neural networks with RelLU activation

I—Statistical physics of learning

Statistical Physics of online Learning

Online-learning: Uncorrelated examples {&€*, 7} arrive one at the
time.

m Previously, online learning in Erf neural networks was
characterized using methods of Statistical Mechanics.

m Dynamics of order parameters were formulated, first as
difference equations, and in the thermodynamic limit as
differential equations.

m Here, the same method is used to characterize online learning
in ReLU neural networks.

6
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On-line learning in neural networks with RelLU activation

I—ReLU perceptron learning dynamics

Student-teacher framework

The target output 7(&) is defined by the teacher network. Student
tries to learn the rule. g(-) is activation function.

Input Input
layer layer
N — J
8@ & 8@ A
By T=9(B:§ T, o=9(J &
/ /
& —@ & —@
9% L
o @ o @
Figure: Teacher with weights Figure: Student with weights
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On-line learning in neural networks with RelLU activation

I—ReLU perceptron learning dynamics

Generalization error

Teacher Student
Input activation: y* = B - &* Input activation: z# = J - ¥
Output: 7 = g(y*) Output: o# = g(zH)

Error on particular example &

«(J,6") = 4(r# = o)

Generalization error
€g(J) = (e(J,€))e

where (...) denotes the average over the input distribution.

Assume uncorrelated random components & € N (0,1).
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I—ReLU perceptron learning dynamics

Gradient descent update rule

Upon presentation of an example &, weight vector J* is adapted:

THEL = i — LV ye(J*, €M) =
T+ ") — g(a™)]g (") € = TH + Fomgr
§H
] % is the learning rate scaled by the network size V.

m Actual form of gradient dependent on choice of g(-)
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On-line learning in neural networks with RelLU activation

I—ReLU perceptron learning dynamics

Order parameters for large dimension N

z=J & y=B-§

In the limit N — oo, the inputs x and y become correlated
Gaussian variables according to the Central Limit Theorem, with:

= () =

) =30 12N Jidj(&&) = Xt I = M1 =

y2>—2n 1ZN EE <fi€j>—zN BQ—HBH2 =1
373/>*Zz 1ZN JiBn <§z§n>22j:1JJBJ*J B*R

<
NJ\/

(
(
(
(
R and @ are the order parameters of the system.
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I—ReLU perceptron learning dynamics

Updates of the order parameters

Ril = Jutl. B = (J' + L5"¢") B

—_—
Jutl

Which leads to the recurrence:

RHtL — RH %(wyu

Updates of order parameters upon presentation of example &r
RHtl —pr 1 1 5uyu QMH Q*+21L 5u$u 4+ (5#)

In the limit N — oo:

m The scaled time variable & = /N becomes continuous.

m The order parameters become self-averaging.
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On-line learning in neural networks with RelLU activation

I—ReLU perceptron learning dynamics
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Figure: For fixed o = 20, the standard deviation of the order parameters
R and @ out of 100 runs for increasing system size V.
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On-line learning in neural networks with RelLU activation
I—ReLU perceptron learning dynamics

N — oo (Thermodynamic limit)

This results in a system of deterministic differential equations for
the evolution of the order parameters:

o = n{dy)
% = (o) +n*(5%)

with 6 = [g(y) — g(2)]g'(2)
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On-line learning in neural networks with ReLU activation

I—ReLU perceptron learning dynamics

Choice of activation function

(a) Erf activation (b) ReLU activation

Figure: Examples of perceptrons with different activation for the same
weight vector: J; = 2.5 and J, = —1.2.
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RelLU activation function Derivative of ReLU

x6(x) 6(x)
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(a) g(z) = 26(x) (b) ¢'(x) = 6(x)

Figure: The ReLU activation function and its derivative.
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On-line learning in neural networks with RelLU activation
I—ReLU perceptron learning dynamics

RelLU Perceptron learning dynamics

A — 5) =l @) — (0 @)

= n({y*0(2)0(y)) — (zy0(2)))

aq

T = 2(62) +°(6%) = 20((g'(@)9(v)z) — (¢ (2)g())) + u*(6%)

(
= 2((zyb(2)0(y)) — (z°0(x))) +17°(6°)

The 2D integrals are taken over the joint Gaussian P(x,y) with
covariance matrix;

= 6H) =3 )

)
(z,
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I—ReLU perceptron learning dynamics

RelLU Perceptron learning dynamics

All averages can be expressed analytically in terms of the order
parameters. The following system is obtained:

OR _
m-”(

_R2 sinT!(—£- )R
<9Q:,7<12%_Q+\/TQ L, (;:W) >+

T sin—1( £~ RA/T O—R2
_g"‘ QSr TQ) + 2

N

27 Q

Oa
2w 2w 2

2 <£+(52>\M+(T2R)Sin_l<\/%)g+Q

Integrating the above ODE'’s numerically yields the evolution of

R(a) and Q(«).



On-line learning in neural networks with RelLU activation

I—ReLU perceptron learning dynamics

Generalization error

eg(J) = (e(J,€))e = 51(9(1)*) — 2{g(y)g(x)) + (9(z)?)]

For RelLU activation, this yields:

eg(J) = 3[(¥*0(y)) — 20ayd(2)0(y)) + (+°0())]

Performing the averages yields an analytic expression in terms of
order parameters R and Q:

1 ( \ Q_R2 + RSin_l(%) + %) + %

ela) =g o or

Solving the ODE's for R(«) and Q(«) yields evolution of €4(a).
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I—ReLU perceptron learning dynamics

ReLU perceptron: Results order parameters

Evolution R and Q (ReLU)
Overlap

1.0 KKKk A

0.8 A

0.6

0.4+ A

0.2
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Figure: solid lines: Theoretical results with R(0) = 0, Q(0) = 0.25 and

1 =0.1. Red triangles: Simulation with N = 1000.
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On-line learning in neural networks with RelLU activation

I—ReLU perceptron learning dynamics

Stability perfect solution R=0Q =1

AtR=Q=1, % =0and 92 = 0 — fixed point.

We consider the linear system

. —1 0 R—-1 .

z=Fz= (n 2 Dy L —2)m 0-1 around the fixed
_(p— e _

point.

Eigenvalues A1(n) = — % and A2(n) = 3(n — 2)n determine
stability of the fp.
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I—ReLU perceptron learning dynamics

Fixed point stability vs. learning rate n

Mi(n) = =3, Aa(n) = 5(n = 2)n
ReLU perceptron fixed point stability

A

10} A
Az

5,

ne = 2, eig. vectors: uy = (1/2,1)T uy = (0,1)T 22/51
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On-line learning in neural networks with RelLU activation

I—ReLU perceptron learning dynamics

Optimal learning rate 7ot

An optimal learning rate would have the characteristics:
m Stable at the perfect solution (R, Q) = (1, 1), therefore

Nopt < Ne
m Reach the perfect solution the fastest

B 7opt ~ 0.83

Generalization error n=0.83
€gla)
0.25

0.20
0.15
0.10
0.05

0.00 R e
50 100 150 200
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On-line learning in neural networks with RelLU activation

I—ReLU Soft Committee Machine learning dynamics

Soft committee machine

Input Hidden Output
layer layer layer

& H‘\
J1 £)

+)— Output

Figure: Soft committee machine with K hidden units.

Student output Teacher output

ot = Zziil 9(Ji - &) Th = 271\14:1 g(Bp - €")
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On-line learning in neural networks with RelLU activation

I—ReLU Soft Committee Machine learning dynamics

Order parameters SCM

The given SCM has K * N adaptable weights.

Student inputs Teacher inputs
vi=J;-& 1€[1,2,..., K| yn=Bp-& mnell,2, .., M]
P(z;,yyn) is the K + M-dimensional Gaussian with covariance

s (Qik Rin (K+M)x (K+M)
matan-(RZL T, eR .

There are K «+ M + K (K + 1)/2 order parameters and ODE's
M ———

Lo e Qu
describing their evolution.
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I—ReLU Soft Committee Machine learning dynamics

ODE's order parameters SCM

Let &; be ¢'(z;)(7# — o)
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I—ReLU Soft Committee Machine learning dynamics

I5 integrals RelLU

It turns out the integrals (6(u)vwl(w)) can be expressed

analytically:
1 913

(0(w)rwl(w)) = = + pr + %%, and
hence:
aRin —

oo~

Rinr/Qii T — R T"’"Shrl(w P )

ZM in iidmm i + Qi Tmm + Thm _

n m=1 27 Q4 o 4
Cwn—1 Qij

K[ Finy/@uQy Q| Homein (ot \ Rin

Zj:l 27Q4s 2m 4
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On-line learning in neural networks with RelLU activation

I—ReLU Soft Committee Machine learning dynamics

Student-student overlaps in limit  — 0
D — p((i0k) + (210:) )+

The n? term consists of four-dimensional averages I, which are
omitted initially. Hence, the dynamics are valid for n — 0.

OQik
o
Ry, sin—1( —Bim__
M Qix \/ QiiTmm_R? o (\/ Qs Tmm) Rim
"7 [Zm_l 27rQii . + o u + Z
Qur /@@y @2 Qursin™ (k=
ZK 1k ] ij + Q”QJJ + % +
Jj=1 2mQi; 27 4

m=1 27erk 2w 4

Rip sin~! | —2km
ZM Qz 3 Q Tmm*RQ,.m “m ( Q Tmm) ;
n [ kv Ckk k V @Kk Rim

K (Qm QrrQjj—Q% Qij Sinil(\/%) Q\, ]
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I—ReLU Soft Committee Machine learning dynamics

Generalization error ReLU SCM

1 K K K M
€g = 5 Z Z<xz$]0(ﬂfz 33] -2 Z Z zzym 171 ym)>
=1 j=1 i=1 m=1

m=1 n:l

(wb(u)p()) = o2 4+ Youra=ehy | 7 (i)

2T 2
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I—ReLU Soft Committee Machine learning dynamics

Experiment ReLU SCM M = K =2

Teacher SCM with M = 2 hidden units and T' =

learned by student SCM with K = 2 hidden units.
Initial conditions:

0 1.2822 10~

E(0) = <1.2822 x1073 0

Q0) = (062 0(.)3)

1
0

3

)

0
1

>. Rule is
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Student-teacher overlap R

Student-student overlap Q
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Generalization error

0.15
0.10+

0.05

| G0F T 56 " T ™
Figure: e(a) of the ReLU SCM, K = M = 2.
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Plateau length increases logarithmically with the deviation from
symmetry X.

Generalization error X=10"-3 Generalization error X=10"-4
&(a) €(a)
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05
0.00 @0.00
0 10 20 30 40 50 60 0 10 20 30 40 50
Generalization error X=10"-5 Generalization error X=10"-6
&(a) €(a)
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05
0.00 &0.00
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On-line learning in neural networks with RelLU activation

I—ReLU Soft Committee Machine learning dynamics

Symmetric plateau

Fixed point associated with plateau:

R 0.5246
Rio 0.5246
Roy 0.5246
Roo ~ | 0.5246
On 0.7178
O1o 0.3830
Q22/ ¢ 0.7178

A = {—1.3583,—0.9568, —0.6443, —0.4399, 0.2392, —0.2308, —0.0049} ,

and the fifth eigenvector us corresponding to the eigenvalue A5 is:
us = (0.5, —0.5,-0.5,0.5,0,0,0)7
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Student-teacher overlap R

Student-student overlap Q
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On-line learning in neural networks with RelLU activation

I—ReLU Soft Committee Machine learning dynamics

Fixed point associated with plateau:

Ry 0.4082
Ry 0.4082
Ry 0.4082
Lfix = RQQ = 0.4082
Qu 0.3333
Q12 0.3333
Q2/ ., ~ \0.3333

A = {-1.4682,-0.6922, —0.6108, —0.4086, 0.0682, —0.0192,0.0103} .

Students are identical in the fixed point. Dominant direction again
us = (0.5,-0.5,-0.5,0.5,0,0,0)7.
uy = (—0.28, -0.28,0.28,0.28, —0.58,0,0.58)7".
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Student-teacher overlap R Student-student overlap Q
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On-line learning in neural networks with RelLU activation

I—ReLU Soft Committee Machine learning dynamics

Different learning scenarios

So far, only realizable scenarios were studied, i.e. K = M.
m K > M (overrealizable): more complexity available than
needed to represent the rule.

m K < M (unrealizable): Rule cannot be represented by the
student.
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I—ReLU Soft Committee Machine learning dynamics

K =3,M =2, ReLU SCM

Student-teacher overlap R Student-student overlap Q
Overlap Overlap
1.0
08
06
0.4
0.2
0.0| —
20 40 60
-0.2
— Ru1 Riz — Rea
Rz = Ry1 — Raz

T =pm, Ri1 = 1073, Q11 =0.2, Q22 = 0.3, QP33 = 0.25 Two of
the student hidden units specialize to one teacher hidden unit.
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Generalization error
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Figure: Generalization error for the overrealizable scenario
(K=3,M=2)
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On-line learning in neural networks with RelLU activation

I—ReLU Soft Committee Machine learning dynamics

K =3, M =2, Erf SCM

Student-teacher overlap R Student-student overlap Q
Overlap Overlap
1.0 1.0
0.8 08
06 06
0.4 0.4
02 0 ~~——
0.0 a 0. S a
100 200 300 20d" 100 206 300 a0d"
-0.2 -0.2]
— Rux Riz Re1 — Qus Qi2 Qi
“— Rz = Ry1 — Raz — Qz — Q3 — Qa3

Figure: Two-layer Erf online gradient descent learning in the
overrealizable scenario using a student with K = 3 and and isotropic
teacher with M = 2.
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Figure: Generalization error for the overrealizable scenario with a Erf

network (K =3, M = 2)
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On-line learning in neural networks with RelLU activation

I—ReLU Soft Committee Machine learning dynamics
K =2, M =3, ReLU SCM

Student-teacher overlap R Student-student overlap Q
i Queriap

0.0 na
20 40 60 80
0. na
20 40 60 80
— Ru1 Riz Ris
— Qi1 Q12 Q22
Rt — Rz — Res

Figure: Online gradient descent learning for an unrealizable case when
the rule is a teacher network with M = 3 ReLU hidden units and the
student is a network with K = 2 RelLU hidden units.
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Figure: Generalization error for the overrealizable scenario
(K =2,M =3).
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On-line learning in neural networks with RelLU activation

I—ReLU Soft Committee Machine learning dynamics

o h 1
Overlap Student-teacher overlap R Student-student overlap Q
1.0 Overlap

1.0 T
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Figure: Online gradient descent learning for an unrealizable case when
the rule is an Erf teacher network with M = 3 hidden units and the
student is an Erf network with K = 2 hidden units.
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Generalization error
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Figure: Generalization error for the unrealizable case in which an Erf

student with K = 2 learns an Erf teacher with M = 3.
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On-line learning in neural networks with RelLU activation

L Future research

Future research

Include n? term.

Learning dynamics of additional schemes or adaptations,
learning rate adaptation.

Other types of architectures.

Time-dependent rule.
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