Segmentation of blood vessels in retinal fundus images

Normal Retina

Severe Diabetic Retinopathy

Healthy Optic Nerve

Optic Nerve in Eye with Glaucoma

Healthy

Hypertension damage

Ophtalmoscopy

Retinal image Segmentation Automatic segmentation

Simple bar-selective filter: B-COSFIRE

Each point described by:

 σ : Std. deviation of DoG_{σ} ρ : Radius of circle that the point lies on ϕ : Angle

Rotation invariance:

Filter application

- Use a Gaussian for tolerance, $stdq' \exists e_{0}' + \alpha \rho_i$
- Response for one point:

 $S_{\sigma_{i},\rho_{i},\phi_{i}}(x,y) = \max_{x',y'} \{ c_{\sigma_{i}}(x - \Delta x_{i} - x', y - \Delta y_{i} - y') G_{\sigma'}(x',y') \}$

• Multiply the shifted responses -> COSFIRE

Pre-processing

Putting it all together

Tuning parameters B-COSFIRE

- **\mathbf{O}:** DoG_{σ}
- ρ: The largest circle

$$\sigma' = \sigma'_0 + \alpha \rho_i$$

• α

Symmetric: $\sigma = 4.8$, $\rho = 20$, $\sigma_0 = 3$, $\alpha = 0.3$ Assymetric: $\sigma = 4.4$, $\rho = 36$, $\sigma_0 = 1$, $\alpha = 0.1$

Segmentation performance

	Classifier: Vessel	Classifier: Non-Vessel
GT: Vessel	TP	FN
GT: Non-Vessel	FP	TN

 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} \in [-1, 1]$

∀^{tt} **₮₽₨₨₱₱**

IOSTAR

EasyScan Optics B.V. The Netherlands

Machine learning approaches

Deep neural network

B-COSFIRE

AUC: .9720

 $\boldsymbol{\mathsf{N}}$

AUC: .9614

Thank you.