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Adversarial examples

Resnet50 trained in imagenet: Kit fox with 76% confidence



Kit fox with 76.0% confidence Coyote with 99.8% confidence.
Kit fox with 2.7*10^-6% confidence.

Max: 2/255, min: -2/255

+ =



Constructing adversarial examples

Adversarial Robustness: Theory and Practice”, Z. Kolter, A. Madry, NeurIPS 2018 tutorial

Apply a perturbation δ that maximizes the loss:  

The perturbations should be imperceptible or not change the semantics of the data:

(each component of ξ perturbable at most by              ) 

Adversarial example: tiny perturbations applied to data aimed at causing incorrect predictions.  

such that For an example                ,    find small

In practice, approximate above by:



Targeted attack

Max: 2/255, min: -2/255

+ =

Kit fox with 76.0% confidence Whisky jug with 100.0% confidence



Computing adversarial perturbations

Fast Gradient Sign Method:

Basic Iterative Method:

• If only discrete labels available: 
train surrogate model on data labeled by the target model and compute adversarial 
examples on that model (using above), (same data distr → similar models).

For t=[1,2...T] iterations



Adversarial training

Standard training:

Adversarial training: allow an adversary to perturb the input first:

“Towards Deep Learning Models Resistant to Adversarial Attacks”, A. Madry et al, ICLR 2018

Assume data,                                                with a distribution P.

is a classifier.



Assessing robustness of the model 

● The standard classification loss of the classifier is

● The ϵ-adversarial classification loss counts considers in addition the non-robust examples:

● By varying ϵ in the above definition, one obtains a monotonically increasing adversarial loss curve.

“Adversarial robustness curves”, C. Göpfert, J. Göpfert, B. Hammer, ECML/PKDD 2019



Experiment Logistic Regression MNIST
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“Explaining and Harnessing Adversarial Examples”, I. Goodfellow et al

+0.1∗

P
r
o
b
a
bi
lit
y 
o
f 
7
: 
0
.
9
9
3

sign (� )P
r
o
b
a
bi
lit
y 
o
f 
7
: 
0
.
2
1
3

C
la
s
si
fi
e
d 
a
s 
3
!

=

Class labels  1: label 3.
-1: label is 7.
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→ Applying the adversarial perturbation to all test samples: 40% test error.

Classifier output on unperturbed test samples Classifier output on perturbed test samples



Experiment Logistic Regression MNIST
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“Explaining and Harnessing Adversarial Examples”, I. Goodfellow et al



Modelling of adversarial training: 1) the data distribution

Labels:

(Separation between cluster centers is ρ)

Means of the two modes:

Stream of examples



1) the data distribution, data in high dimension N=1000



Modelling of adversarial training: 2) the machine learning model 

Model with linear decision boundary, parameters are weight vector and bias:

Then the output of the model is

Define the argument as:

(Local potential/pre-activation)



Modelling of adversarial training: 3) the learning algorithm 

Normal algorithm Adversarial 
Training (AT)

Training data

Loss:

Updates:



Modelling of adversarial training: Order parameters

with pre-activation:

 is distributed as a Gaussian (in this case also for small N) 

It’s conditional mean and variance are:

,

,

R and b are order parameters of the system. 



Modelling of adversarial training: Dynamics of the order parameters

Self-averages for large N and many example presentations
for the normalized learning time                , write ODEs: 



Modelling of adversarial training: Evaluation measures

Test classification error:

Adversarial classification error:

Obtain both curves by substitution of R(α), b(α):

,

Obtain final robustness vs. a range of epsilon:



Results – Scenario 1



Results – Scenario 2





Outlook

● Extension to two layer non-linear neural networks, better model 
scenarios.

● Analyse variants of adversarial training, randomized epsilon, 
training only on non-robust examples (hinge loss).
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